Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Connecting Earth observation to high-throughput biodiversity data


Understandably, given the fast pace of biodiversity loss, there is much interest in using Earth observation technology to track biodiversity, ecosystem functions and ecosystem services. However, because most biodiversity is invisible to Earth observation, indicators based on Earth observation could be misleading and reduce the effectiveness of nature conservation and even unintentionally decrease conservation effort. We describe an approach that combines automated recording devices, high-throughput DNA sequencing and modern ecological modelling to extract much more of the information available in Earth observation data. This approach is achievable now, offering efficient and near-real-time monitoring of management impacts on biodiversity and its functions and services.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Connecting Earth observation to biodiversity and ecosystems.
Figure 2: Metabarcoding and metagenomic processing pipelines for high-throughput biodiversity surveys.
Figure 3: Three statistical pathways to map community composition and summary metrics from the combination of biodiversity point samples and continuous Earth observation maps.


  1. 1

    Verrelst, J. et al. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties – A review. ISPRS J. Photogramm. Remote Sens. 108, 273–290 (2015).

    Article  Google Scholar 

  2. 2

    Wulder, M. A. et al. Virtual constellations for global terrestrial monitoring. Remote Sens. Environ. 170, 62–76 (2015).

    Article  Google Scholar 

  3. 3

    Toth, C. & Jóźków, G. Remote sensing platforms and sensors: a survey. ISPRS J. Photogramm. Remote Sens. 115, 22–36 (2016).

    Article  Google Scholar 

  4. 4

    O’Connor, B. et al. Earth observation as a tool for tracking progress towards the Aichi Biodiversity Targets. Remote Sens. Ecol. Conserv. 1, 19–28 (2015).

    Article  Google Scholar 

  5. 5

    Skidmore, A. K. et al. Agree on biodiversity metrics to track from space. Nature 523, 403–405 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6

    Pettorelli, N. et al. Framing the concept of Satellite Remote Sensing Essential Biodiversity Variables: challenges and future directions. Remote Sens. Ecol. Conserv. 2, 122–131 (2016).

    Article  Google Scholar 

  7. 7

    Decision adopted by the Conference of the Parties to the Convention on Biological Diversity at its Tenth Meeting. Decision X/2. The Strategic Plan for Biodiversity 2011–2020 and the Aichi Biodiversity Targets (UNEP/CBD/COP/DEC/X/2, 2010).

  8. 8

    Transforming our World: the 2030 Agenda for Sustainable Development A/RES/70/1 (United Nations General Assembly, 2015).

  9. 9

    Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCCC, 2015).

  10. 10

    Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11

    Durance, I. et al. The challenges of linking ecosystem services to biodiversity. Adv. Ecol. Res. 54, 87–134 (2016).

    Article  Google Scholar 

  12. 12

    Pettorelli, N., Owen, H. & Duncan, C. How do we want satellite remote sensing to support biodiversity conservation globally? Methods Ecol. Evol. 7, 656–665 (2016).

    Article  Google Scholar 

  13. 13

    Decision and Scoping Report for the IPBES Global Assessment on Biodiversity and Ecosystem Services IPBES-4/1 (IPBES, 2016).

  14. 14

    Dawson, T. P., Cutler, M. E. J. & Brown, C. The role of remote sensing in the development of SMART indicators for ecosystem services assessment. Biodiversity 17, 136–148 (2016).

    Article  Google Scholar 

  15. 15

    Pereira, H. M. et al. Essential Biodiversity Variables. Science 339, 277–278 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16

    Proença, V. et al. Global biodiversity monitoring: from data sources to Essential Biodiversity Variables. Biol. Conserv. (2016).

  17. 17

    Ferrier, S. Extracting more value from biodiversity change observations through integrated modeling. BioScience 61, 96–97 (2011).

    Article  Google Scholar 

  18. 18

    Belward, A. S. & Skøien, J. O. Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites. ISPRS J. Photogramm. Remote Sens. 103, 115–128 (2015).

    Article  Google Scholar 

  19. 19

    Roy, D. P. et al. Landsat-8: science and product vision for terrestrial global change research. Remote Sens. Environ. 145, 154–172 (2014).

    Article  Google Scholar 

  20. 20

    Turner, W. et al. Free and open-access satellite data are key to biodiversity conservation. Biol. Conserv. 182, 173–176 (2015).

    Article  Google Scholar 

  21. 21

    Butler, D. Earth observation enters next phase. Nature 508, 160–161 (2014).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Berger, M., Moreno, J., Johannessen, J. A., Levelt, P. F. & Hanssen, R. F. ESA's sentinel missions in support of Earth system science. Remote Sens. Environ. 120, 84–90 (2012).

    Article  Google Scholar 

  23. 23

    Malenovský, Z. et al. Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 120, 91–101 (2012).

    Article  Google Scholar 

  24. 24

    Asner, G. P. et al. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science 355, 385–389 (2017).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Petrou, Z. I., Manakos, I. & Stathaki, T. Remote sensing for biodiversity monitoring: a review of methods for biodiversity indicator extraction and assessment of progress towards international targets. Biodiv. Conserv. 24, 2333–2363 (2015).

    Article  Google Scholar 

  26. 26

    Wulder, M. A., Masek, J. G., Cohen, W. B., Loveland, T. R. & Woodcock, C. E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 122, 2–10 (2012).

    Article  Google Scholar 

  27. 27

    Lindenmayer, D. B. & Likens, G. E. Direct measurement versus surrogate indicator species for evaluating environmental change and biodiversity loss. Ecosystems 14, 47–59 (2011).

    CAS  Article  Google Scholar 

  28. 28

    Mueller, M. & Geist, J. Conceptual guidelines for the implementation of the ecosystem approach in biodiversity monitoring. Ecosphere 7, e01305 (2016).

    Article  Google Scholar 

  29. 29

    Snaddon, J., Petrokofsky, G., Jepson, P. & Willis, K. J. Biodiversity technologies: tools as change agents. Biol. Lett. 9, 20121029 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Turner, W. Sensing biodiversity. Science 346, 301–302 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31

    Acevedo, M. A. & Villanueva-Rivera, L. J. Using automated digital recording systems as effective tools for the monitoring of birds and amphibians. Wildlife Soc. Bull. 34, 211–214 (2006).

    Article  Google Scholar 

  32. 32

    Lammers, M. O., Brainard, R. E., Au, W. W. L., Mooney, T. A. & Wong, K. B. An ecological acoustic recorder (EAR) for long-term monitoring of biological and anthropogenic sounds on coral reefs and other marine habitats. J. Acoust. Soc. Am. 123, 1720–1728 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  33. 33

    Jung, K. & Kalko, E. K. V. Adaptability and vulnerability of high flying Neotropical aerial insectivorous bats to urbanization. Div. Distrib. 17, 262–274 (2011).

    Article  Google Scholar 

  34. 34

    Aide, T. M. et al. Real-time bioacoustics monitoring and automated species identification. PeerJ 1, e103 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Sollmann, R. et al. Quantifying mammal biodiversity co-benefits in certified tropical forests. Div. Distrib. 23, 317–328 (2017).

    Article  Google Scholar 

  36. 36

    Yu, D. W. et al. Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol. Evol. 3, 613–623 (2012).

    Article  Google Scholar 

  37. 37

    Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol. 21, 1789–1793 (2012).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29, 358–367 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  39. 39

    Ji, Y. et al. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol. Lett. 16, 1245–1257 (2013).

    PubMed  Article  Google Scholar 

  40. 40

    Lejzerowicz, F. et al. High-throughput sequencing and morphology perform equally well for benthic monitoring of marine ecosystems. Sci. Rep. 5, 13932 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Edwards, D. P. et al. Selective-logging and oil palm: multitaxon impacts, biodiversity indicators, and trade-offs for conservation planning. Ecol. Appl. 24, 2029–2049 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  42. 42

    Chariton, A. A. et al. Emergent technologies and analytical approaches for understanding the effects of multiple stressors in aquatic environments. Mar. Freshw. Res. 67, 414–428 (2015).

    Article  Google Scholar 

  43. 43

    Aylagas, E., Borja, Á., Irigoien, X. & Rodríguez-Ezpeleta, N. Benchmarking DNA metabarcoding for biodiversity-based monitoring and assessment. Front. Mar. Sci. 3, 96 (2016).

    Google Scholar 

  44. 44

    Visco, J. A. et al. Environmental monitoring: inferring the diatom index from next-generation sequencing data. Env. Sci. Technol. 49, 7597–7605 (2015).

    CAS  Article  Google Scholar 

  45. 45

    Xue, K. et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nat. Clim. Change 6, 595–600 (2016).

    CAS  Article  Google Scholar 

  46. 46

    Asner, G. P., Knapp, D. E., Anderson, C. B., Martin, R. E. & Vaughn, N. Large-scale climatic and geophysical controls on the leaf economics spectrum. Proc. Natl Acad. Sci. USA 113, E4043–E4051 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47

    Fisher, J. B., Sweeney, S. & Brzostek, E. R. Tree–mycorrhizal associations detected remotely from canopy spectral properties. Glob. Change Biol. 22, 2596–2607 (2016).

    Article  Google Scholar 

  48. 48

    Bohan, D. A. et al. Next-generation global biomonitoring: large-scale, automated reconstruction of ecological networks. Trends Ecol. Evol. (2017).

    Article  Google Scholar 

  49. 49

    Barnes, A. D. et al. Species richness and biomass explain spatial turnover in ecosystem functioning across tropical and temperate ecosystems. Philos. Trans. R. Soc. B 371, 20150279 (2016).

    Article  Google Scholar 

  50. 50

    Brose, U. & Hillebrand, H. Biodiversity and ecosystem functioning in dynamic landscapes. Philos. Trans. R. Soc. B 371, 20150267 (2016).

    Article  Google Scholar 

  51. 51

    Burley, H. M., Mokany, K., Ferrier, S. & Laffan, S. W. Macroecological scale effects of biodiversity on ecosystem functions under environmental change. Ecol. Evol. 6, 2579–2593 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52

    Tang, M. et al. High-throughput monitoring of wild bee diversity and abundance via mitogenomics. Methods Ecol. Evol. 6, 1034–1043 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53

    Wood, T. J., Holland, J. M. & Goulson, D. Providing foraging resources for solitary bees on farmland: current schemes for pollinators benefit a limited suite of species. J. Appl. Ecol. 54, 323–333 (2017).

    Article  Google Scholar 

  54. 54

    McIntyre, P. B., Jones, L. E., Flecker, A. S. & Vanni, M. J. Fish extinctions alter nutrient recycling in tropical freshwaters. Proc. Natl Acad. Sci. USA 104, 4461–4466 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55

    Solan, M. et al. Extinction and ecosystem function in the marine benthos. Science 306, 1177–1180 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56

    Sunarto, Sollmann, R., Mohamed, A. & Kelly, M. J. Camera trapping for the study and conservation of tropical carnivores. Raffles Bull. Zool. 28, 21–42 (2013).

    Google Scholar 

  57. 57

    Sigsgaard, E. E. et al. Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA. Nat. Ecol. Evol. 1, 0004 (2016).

    Article  Google Scholar 

  58. 58

    Ferrier, S. Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? System. Biol. 51, 331–363 (2002).

    Article  Google Scholar 

  59. 59

    Ferrier, S. & Guisan, A. Spatial modelling of biodiversity at the community level. J. Appl. Ecol. 43, 393–404 (2006).

    Article  Google Scholar 

  60. 60

    Honrado, J. P., Pereira, H. M. & Guisan, A. Fostering integration between biodiversity monitoring and modelling. J. Appl. Ecol. 53, 1299–1304 (2016).

    Article  Google Scholar 

  61. 61

    D’Amen, M., Rahbek, C., Zimmermann, N. E. & Guisan, A. Spatial predictions at the community level: from current approaches to future frameworks. Biol. Rev. 92, 169–187 (2017).

    PubMed  Article  Google Scholar 

  62. 62

    Warton, D. I. et al. So many variables: joint modeling in community ecology. Trends Ecol. Evol. 30, 766–779 (2015).

    PubMed  Article  Google Scholar 

  63. 63

    Ovaskainen, O., Abrego, N., Halme, P. & Dunson, D. Using latent variable models to identify large networks of species-to-species associations at different spatial scales. Methods Ecol. Evol. 7, 549–555 (2016).

    Article  Google Scholar 

  64. 64

    Ovaskainen, O., Roy, D. B., Fox, R. & Anderson, B. J. Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models. Methods Ecol. Evol. 7, 428–436 (2016).

    Article  Google Scholar 

  65. 65

    Ovaskainen, O. et al. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 20, 561–576 (2017).

    PubMed  Article  Google Scholar 

  66. 66

    Dorazio, R. M. & Royle, J. A. Estimating size and composition of biological communities by modeling the occurrence of species. J. Am. Stat. Assoc. 100, 389–398 (2005).

    CAS  Article  Google Scholar 

  67. 67

    Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Div. Distrib. 13, 252–264 (2007).

    Article  Google Scholar 

  68. 68

    Hottola, J., Ovaskainen, O. & Hanski, I. A unified measure of the number, volume and diversity of dead trees and the response of fungal communities. J. Ecol. 97, 1320–1328 (2009).

    Article  Google Scholar 

  69. 69

    Mücke, W., Deák, B., Schroiff, A., Hollaus, M. & Pfeifer, N. Detection of fallen trees in forested areas using small footprint airborne laser scanning data. Can. J. Remote Sens. 39, S32–S40 (2013).

    Article  Google Scholar 

  70. 70

    Yang, C. Y. et al. Higher fungal diversity is correlated with lower CO2 emissions from dead wood in a natural forest. Sci. Rep. 6, 31066 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71

    Pasari, J. R., Levi, T., Zavaleta, E. S. & Tilman, D. Several scales of biodiversity affect ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 110, 10219–10222 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72

    Wang, S. & Loreau, M. Ecosystem stability in space: α, β and γ variability. Ecol. Lett. 17, 891–901 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  73. 73

    Cardinale, B. J., Duffy, J. E., Gonzalez, A. & Hooper, D. U. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74

    Olson, J. R., Hawkins, C. P., Mock, K., Huntington, J. & Susfalk, R. System for Mapping And Predicting Species Of Concern (SMAP-SOC), Phase I Final Report and Phase II Plan., (NASA Earth Science Division/Applied Sciences Program, Washington D. C., 2014).

    Google Scholar 

  75. 75

    Calabrese, J. M., Certain, G., Kraan, C. & Dormann, C. F. Stacking species distribution models and adjusting bias by linking them to macroecological models. Glob. Ecol. Biogeogr. 23, 99–112 (2014).

    Article  Google Scholar 

  76. 76

    Kéry, M. & Royle, A. J. in Modeling Demographic Processes in Marked Populations. Environmental and Ecological Statistics Vol. 3 (eds Thomson, D. L., Cooch, E. G. & Conroy, M. J. ) 639–656 (Springer, 2009).

    Book  Google Scholar 

  77. 77

    Ovaskainen, O. & Soininen, J. Making more out of sparse data: hierarchical modeling of species communities. Ecology 92, 289–295 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  78. 78

    Mokany, K., Harwood, T., Overton, J., Barker, G. & Ferrier, S. Combining α- and β-diversity models to fill gaps in our knowledge of biodiversity. Ecol. Lett. 14, 1043–1051 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  79. 79

    Ferretti, V. & Pomarico, S. Ecological land suitability analysis through spatial indicators: an application of the analytic network process technique and ordered weighted average approach. Ecol. Indic. 34, 507–519 (2013).

    Article  Google Scholar 

  80. 80

    Marcot, B. G. et al. Recent advances in applying decision science to managing national forests. Forest Ecol. Manag. 285, 123–132 (2012).

    Article  Google Scholar 

  81. 81

    Gregory, R., Long, G., Colligan, M., Geiger, J. G. & Laser, M. When experts disagree (and better science won’t help much): using structured deliberations to support endangered species recovery planning. J. Environ. Manag. 105, 30–43 (2012).

    Article  Google Scholar 

  82. 82

    Steidl, R. J., Hayes, J. P. & Schauber, E. Statistical power analysis in wildlife research. J. Wildlife Manag. 61, 270–279 (1997).

    Article  Google Scholar 

  83. 83

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84

    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85

    Global Biodiversity Change Indicators Version 1.2 (GEO BON, 2015).

  86. 86

    Allnutt, T. F. et al. A method for quantifying biodiversity loss and its application to a 50-year record of deforestation across Madagascar. Conserv. Lett. 1, 173–181 (2008).

    Article  Google Scholar 

  87. 87

    Ferrier, S. et al. Mapping more of terrestrial biodiversity for global conservation assessment. BioScience 54, 1101–1109 (2004).

    Article  Google Scholar 

  88. 88

    Cardoso, P., Erwin, T. L., Borges, P. A. V. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655 (2011).

    Article  Google Scholar 

  89. 89

    Eigenbrod, F. et al. The impact of proxy-based methods on mapping the distribution of ecosystem services. J. Appl. Ecol. 47, 377–385 (2010).

    Article  Google Scholar 

  90. 90

    Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett. 18, 1–16 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  91. 91

    Crampton-Platt, A., Yu, D. W., Zhou, X. & Vogler, A. P. Mitochondrial metagenomics: letting the genes out of the bottle. GigaScience 5, 0120 (2016).

    Article  CAS  Google Scholar 

  92. 92

    Maron, M., Gordon, A., Mackey, B., Posssingham, H. P. & Watson, J. E. M. Stop misuse of biodiversity offsets. Nature 523, 401–403 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93

    Palumbo, I. et al. Building capacity in remote sensing for conservation: present and future challenges. Remote Sens. Ecol. Conserv. 3, 21–29 (2016).

    Article  Google Scholar 

  94. 94

    Dafforn, K. A., Johnston, E. L. & Ferguson, A. Big data opportunities and challenges for assessing multiple stressors across scales in aquatic ecosystems. Mar. Freshw. Res. 67, 393–413 (2015).

    Article  Google Scholar 

  95. 95

    Schmeller, D. S. et al. Towards a global terrestrial species monitoring program. J. Nat. Conserv. 25, 51–57 (2015).

    Article  Google Scholar 

  96. 96

    Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. M. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl Acad. Sci. USA 113, 892–897 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97

    Levi, T., Shepard, G. H. Jr, Ohl-Schacherer, J., Peres, C. A. & Yu, D. W. Modelling the long-term sustainability of indigenous hunting in Manu National Park, Peru: landscape-scale management implications for Amazonia. J. Appl. Ecol. 46, 804–814 (2009).

    Article  Google Scholar 

  98. 98

    Newton, A. C. Implications of Goodhart's Law for monitoring global biodiversity loss. Conserv. Lett. 4, 264–268 (2011).

    Article  Google Scholar 

  99. 99

    Smaldino, P. E. & McElreath, R. The natural selection of bad science. R. Soc. Open Sci. 3, 160384 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  100. 100

    Crowther, T. W. et al. Biotic interactions mediate soil microbial feedbacks to climate change. Proc. Natl Acad. Sci. USA 112, 7033–7038 (2015).

    CAS  PubMed  Article  Google Scholar 

Download references


This Perspective is a product of the EO-BESS Working Group, organized by H.B., D.R. and B.C. and funded by the UK Natural Environment Research Council. Individual author acknowledgements are in Supplementary Information.

Author information




B.C. and H.B. led the sections on Earth observation technology. K.B. and D.W.Y. led the sections on biodiversity technology. A.B. led the sections on statistical modelling. A.B., R.S., A.W., O.O., and D.W.Y. led the sections on case studies (Box 3 and ‘From CEOBE to Aichi’). C.M. led the conclusions section. Figures were created by K.B., A.B., C.C. and A.Z. All authors contributed to multiple rewrites, with a large contribution by D.R; A.B. and D.W.Y. wrote the first draft and supervised the work.

Corresponding author

Correspondence to Douglas W. Yu.

Ethics declarations

Competing interests

D.W.Y. and A.V. are co-founders of a private company that provides commercial metabarcoding services.

Supplementary information

Supplementary Information

Supplementary Notes 1–4, Supplementary Figure 1, Supplementary Acknowledgements, Supplementary References (PDF 778 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bush, A., Sollmann, R., Wilting, A. et al. Connecting Earth observation to high-throughput biodiversity data. Nat Ecol Evol 1, 0176 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing