Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Revisiting the biodiversity–ecosystem multifunctionality relationship

Abstract

A recent and prominent claim for the value of biodiversity is its importance for sustaining multiple ecosystem functions. The general idea is intuitively appealing: since all species are to some extent unique, each will be important for a different set of functions. Therefore, as more functions are considered, a greater diversity of species is necessary to sustain all functions simultaneously. However, we show here that the relationship between biodiversity and ecosystem functioning does not change with the number of functions considered. Biodiversity affects the level of multifunctionality via non-additive effects on individual functions, and the effect on multifunctionality equals the average effect on single functions. These insights run counter to messages in the literature. In the light of our simulations, we present limitations and pitfalls with current methods used to study biodiversity–multifunctionality, which together provide a perspective for future studies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Two scenarios for the relationship between biodiversity and multifunctionality.
Figure 2: The slope between species richness and average multifunctionality in relation to the number of functions and species considered.
Figure 3: The effect of standardization choice on the result of the multi-threshold approach.

References

  1. 1

    Schmid, B. et al. in Biodiversity, Ecosystem Functioning, and Human Wellbeing: an Ecological and Economic Perspective (eds Naeem, S. et al.) Ch. 2 (Oxford Univ. Press, 2009).

    Google Scholar 

  2. 2

    Cardinale, B. J. et al. The functional role of producer diversity in ecosystems. Am. J. Botany 98, 572–592 (2011).

    Google Scholar 

  3. 3

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012). The most-recently published scientific consensus statement on how biodiversity influences ecosystem functions and services, including a short forward-looking perspective on biodiversity and multifunctionality.

    CAS  PubMed  Google Scholar 

  4. 4

    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Ann. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).

    Google Scholar 

  5. 5

    Gamfeldt, L. et al. Marine biodiversity and ecosystem functioning: what's known and what's next? Oikos 124, 252–265 (2015).

    Google Scholar 

  6. 6

    Cardinale, B. J. et al. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443, 989–992 (2006).

    CAS  PubMed  Google Scholar 

  7. 7

    O’Connor, M. I. et al. A general biodiversity–function relationship is mediated by trophic level. Oikos 126, 18–31 (2016).

    Google Scholar 

  8. 8

    Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–190 (2007).

    CAS  PubMed  Google Scholar 

  9. 9

    Duffy, J. E., Richardson, J. P. & Canuel, E. A. Grazer diversity effects on ecosystem functioning in seagrass beds. Ecol. Lett. 6, 637–645 (2003). This was the first explicit biodiversity–multifunctionality paper, and it concluded that a mixture of species simultaneously maximizes multiple functions.

    Google Scholar 

  10. 10

    Gamfeldt, L., Hillebrand, H. & Jonsson, P. R. Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89, 1223–1231 (2008).

    PubMed  Google Scholar 

  11. 11

    He, J.-Z., Ge, Y., Xu, Z. & Chen, C. Linking soil bacterial diversity to ecosystem multifunctionality using backward-elimination boosted trees analysis. J. Soils Sediments 9, 547–554 (2009).

    CAS  Google Scholar 

  12. 12

    Zavaleta, E. S., Pasari, J. R., Hulvey, K. B. & Tilman, G. D. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc. Natl Acad. Sci. USA 107, 1443–1446 (2010).

    CAS  PubMed  Google Scholar 

  13. 13

    Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).

    CAS  PubMed  Google Scholar 

  14. 14

    Mouillot, D., Villeger, S., Scherer-Lorenzen, M. & Mason, N. W. H. Functional structure of biological communities predicts ecosystem multifunctionality. PLoS ONE 6, e17476 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Peter, H. et al. Multifunctionality and diversity in bacterial biofilms. PLoS ONE 6, e23225 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Maestre, F. T. et al. plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Bradford, M. A. et al. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proc. Natl Acad. Sci. USA 111, 14478–14483 (2014).

    CAS  PubMed  Google Scholar 

  18. 18

    Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).

    CAS  PubMed  Google Scholar 

  19. 19

    Perkins, D. M. et al. Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes. Global Change Biol. 21, 396–406 (2015).

    Google Scholar 

  20. 20

    Lohbeck, M., Bongers, F., Martinez-Ramos, M. & Poorter, L. The importance of biodiversity and dominance for multiple ecosystem functions in a human-modified tropical landscape. Ecology 97, 2772–2779 (2016).

    PubMed  Google Scholar 

  21. 21

    Mori, A. S. et al. Low multifunctional redundancy of soil fungal diversity at multiple scales. Ecol. Lett. 19, 249–259 (2016).

    PubMed  Google Scholar 

  22. 22

    Soliveres, S. et al. Locally rare species influence grassland ecosystem multifunctionality. Phil. Trans. R. Soc. B 371, 20150269 (2016).

  23. 23

    van der Plas, F. et al. Jack-of-all-trades effects drive biodiversity-ecosystem multifunctionality relationships in European forests. Nat. Commun. 7, 11109 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936 (2015). This is to date the only meta-analysis of biodiversity–multifunctionality studies.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Byrnes, J. E. K. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014). This is the first methods and review paper about the different approaches available to analyse biodiversity and multifunctionality.

    Google Scholar 

  26. 26

    Dooley, A. et al. Testing the effects of diversity on ecosystem multifunctionality using a multivariate model. Ecol. Lett. 18, 1242–1251 (2015).

    Google Scholar 

  27. 27

    Hensel, M. J. S. & Silliman, B. R. Consumer diversity across kingdoms supports multiple functions in a coastal ecosystem. Proc. Natl Acad. Sci. USA 110, 20621–20626 (2013).

    CAS  PubMed  Google Scholar 

  28. 28

    Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).

    CAS  PubMed  Google Scholar 

  29. 29

    Duffy, J. E. Why biodiversity is important to the functioning of real-world ecosystems. Front. Ecol. Environ. 7, 437–444 (2009).

    Google Scholar 

  30. 30

    van der Plas, F. et al. Biotic homogenization can decrease landscape-scale forest multifunctionality. Proc. Natl Acad. Sci. USA 113, 3557–3562 (2016).

    CAS  PubMed  Google Scholar 

  31. 31

    Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4, 1340 (2013).

    PubMed  PubMed Central  Google Scholar 

  32. 32

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    PubMed  Google Scholar 

  33. 33

    Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).

    Google Scholar 

  34. 34

    Hillebrand, H., Bennett, D. M. & Cadotte, M. W. The consequences of dominance: A review of the effects of evenness on local and regional ecosystem processes. Ecology 89, 1510–1520 (2008).

    PubMed  Google Scholar 

  35. 35

    Hooper, D. U. & Vitousek, P. M. Effects of plant composition and diversity on nutrient cycling. Ecol. Monogr. 68, 121–149 (1998).

    Google Scholar 

  36. 36

    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–75 (2001).

    CAS  PubMed  Google Scholar 

  37. 37

    Doak, D. F. et al. The statistical inevitability of stability–diversity relationships in community ecology. Am. Nat. 151, 264–276 (1998).

    CAS  PubMed  Google Scholar 

  38. 38

    Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Spehn, E. M. et al. Ecosystem effects of biodiversity manipulations in European grasslands. Ecol. Monogr. 75, 37–63 (2005).

    Google Scholar 

  40. 40

    Stachowicz, J. J., Bruno, J. F. & Duffy, J. E. Understanding the effects of marine biodiversity on communities and ecosystems. Ann. Rev. Ecol. Evol. Syst. 38, 739–766 (2007).

    Google Scholar 

  41. 41

    Vilà, M. et al. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702–708 (2011).

    PubMed  Google Scholar 

  42. 42

    Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).

    Google Scholar 

  43. 43

    Lohrer, A. M., Thrush, S. F. & Gibbs, M. M. Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature 431, 1092–1095 (2004).

    CAS  PubMed  Google Scholar 

  44. 44

    Cardinale, B. J. et al. in Biodiversity, Ecosystem Functioning, and Human Wellbeing: an Ecological and Economic Perspective (eds Naeem, S. et al.) Ch. 8 (Oxford Univ. Press, 2009).

    Google Scholar 

  45. 45

    Alsterberg, C., Sundbäck, K. & Gamfeldt, L. Multiple stressors and multifunctionality: limited effects on an illuminated benthic system. Biol. Lett. 10, 20140640 (2014).

    PubMed  PubMed Central  Google Scholar 

  46. 46

    Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).

    PubMed  PubMed Central  Google Scholar 

  47. 47

    Jing, X. et al. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nat. Commun. 6, 8159 (2015).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Jonsson, J. Griffin and J. Bengtsson for providing valuable feedback and comments on earlier drafts. This work was supported by grant 621-2009-5457 from the Swedish research council VR to L.G.

Author information

Affiliations

Authors

Contributions

Study idea by L.G.; L.G. and F.R. designed the study; F.R. wrote the script for the analyses; L.G. and F.R. interpreted the analyses and wrote the paper.

Corresponding authors

Correspondence to Lars Gamfeldt or Fabian Roger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–3 (PDF 2157 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gamfeldt, L., Roger, F. Revisiting the biodiversity–ecosystem multifunctionality relationship. Nat Ecol Evol 1, 0168 (2017). https://doi.org/10.1038/s41559-017-0168

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing