Abstract
Fatty acid desaturase (FADS) genes encode rate-limiting enzymes for the biosynthesis of omega-6 and omega-3 long-chain polyunsaturated fatty acids (LCPUFAs). This biosynthesis is essential for individuals subsisting on LCPUFA-poor diets (for example, plant-based). Positive selection on FADS genes has been reported in multiple populations, but its cause and pattern in Europeans remain unknown. Here we demonstrate, using ancient and modern DNA, that positive selection acted on the same FADS variants both before and after the advent of farming in Europe, but on opposite (that is, alternative) alleles. Recent selection in farmers also varied geographically, with the strongest signal in southern Europe. These varying selection patterns concur with anthropological evidence of varying diets, and with the association of farming-adaptive alleles with higher FADS1 expression and thus enhanced LCPUFA biosynthesis. Genome-wide association studies reveal that farming-adaptive alleles not only increase LCPUFAs, but also affect other lipid levels and protect against several inflammatory diseases.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Fan, S., Hansen, M. E. B., Lo, Y. & Tishkoff, S. A. Going global by adapting local: a review of recent human adaptation. Science 354, 54–59 (2016).
Nakamura, M. T. & Nara, T. Y. Structure, function, and dietary regulation of Δ6, Δ5, and Δ9 desaturases. Annu. Rev. Nutr. 24, 345–376 (2004).
Raphael, W. & Sordillo, L. M. Dietary polyunsaturated fatty acids and inflammation: the role of phospholipid biosynthesis. Int. J. Mol. Sci. 14, 21167–21188 (2013).
Bazinet, R. P. & Layé, S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci. 15, 771–785 (2014).
Mathias, R. A. et al. Adaptive evolution of the FADS gene cluster within Africa. PLoS One 7, e44926 (2012).
Ameur, A. et al. Genetic adaptation of fatty-acid metabolism: a human-specific haplotype increasing the biosynthesis of long-chain omega-3 and omega-6 fatty acids. Am. J. Hum. Genet. 90, 809–820 (2012).
The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).
Kothapalli, K. S. et al. Positive selection on a regulatory insertion–deletion polymorphism in FADS2 influences apparent endogenous synthesis of arachidonic acid. Mol. Biol. Evol. 33, 1726–1739 (2016).
Fumagalli, M. et al. Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science 349, 1343–1347 (2015).
Amorim, C. E. G. et al. Genetic signature of natural selection in first Americans. Proc. Natl Acad. Sci. USA 114, 2195–2199 (2017).
Reardon, H. T. et al. Insertion–deletions in a FADS2 intron 1 conserved regulatory locus control expression of fatty acid desaturases 1 and 2 and modulate response to simvastatin. Prostaglandins Leukot. Essent. Fatty Acids 87, 25–33 (2012).
Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).
Bar-Yosef, O. in On Human Nature: Biology, Psychology, Ethics, Politics, and Religion (eds Tibayrenc, M. & Ayala, F. J. ) Ch. 19, 297–331 (Academic, 2017).
Coward, F., Shennan, S., Colledge, S., Conolly, J. & Collard, M. The spread of Neolithic plant economies from the Near East to northwest Europe: a phylogenetic analysis. J. Archaeol. Sci. 35, 42–56 (2008).
Bogaard, A. et al. Crop manuring and intensive land management by Europe’s first farmers. Proc. Natl Acad. Sci. USA 110, 12589–12594 (2013).
Richards, M. P. in The Evolution of Hominin Diets: Integrating Approaches to the Study of Palaeolithic Subsistence (eds Hublin, J. J. & Richards, M. P. ) 251–257 (Springer Science + Business Media, 2009).
Richards, M. P., Schulting, R. J. & Hedges, R. E. Archaeology: sharp shift in diet at onset of Neolithic. Nature 425, 366 (2003).
Richards, M. P., Price, T. D. & Koch, E. Mesolithic and Neolithic subsistence in Denmark: new stable isotope data. Curr. Anthropol. 44, 288–295 (2003).
Fraser, R. A., Bogaard, A., Schäfer, M., Arbogast, R. & Heaton, T. H. E. Integrating botanical, faunal and human stable carbon and nitrogen isotope values to reconstruct land use and palaeodiet at LBK Vaihingen an der Enz, Baden-Württemberg. World Archaeol. 45, 492–517 (2013).
Knipper, C. et al. What is on the menu in a Celtic town? Iron Age diet reconstructed at Basel-Gasfabrik, Switzerland. Archaeol. Anthropol. Sci. http://dx.doi.org/10.1007/s12520-016-0362-8 (2016).
López-Costas, O., Müldner, G. & Martínez Cortizas, A. Diet and lifestyle in Bronze Age northwest Spain: the collective burial of Cova do Santo. J. Archaeol. Sci. 55, 209–218 (2015).
Ferrer-Admetlla, A., Liang, M., Korneliussen, T. & Nielsen, R. On detecting incomplete soft or hard selective sweeps using haplotype structure. Mol. Biol. Evol. 31, 1275–1291 (2014).
Field, Y. et al. Detection of human adaptation during the past 2000 years. Science 354, 760–764 (2016).
Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).
Schraiber, J. G., Evans, S. N. & Slatkin, M. Bayesian inference of natural selection from allele frequency time series. Genetics 203, 493–511 (2016).
Ferrer-Admetlla, A., Leuenberger, C., Jensen, J. D. & Wegmann, D. An approximate Markov model for the Wright–Fisher diffusion and its application to time series data. Genetics 203, 831–846 (2016).
GTEx Consortium. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).
Welter, D. et al. The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 42, D1001–D1006 (2014).
Mozaffarian, D. et al. Genetic loci associated with circulating phospholipid trans fatty acids: a meta-analysis of genome-wide association studies from the CHARGE consortium. Am. J. Clin. Nutr. 101, 398–406 (2015).
den Hoed, M. et al. Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders. Nat. Genet. 45, 621–631 (2013).
Buckley, M. T. et al. Selection in Europeans on fatty acid desaturases associated with dietary changes. Mol. Biol. Evol. http://dx.doi.org/10.1093/molbev/msx103 (2017).
Pan, G. et al. PATZ1 down-regulates FADS1 by binding to rs174557 and is opposed by SP1/SREBP1c. Nucleic Acids Res. 45, 2408–2422 (2017).
Richards, M. P. & Hedges, R. E. M. Stable isotope evidence for similarities in the types of marine foods used by late Mesolithic humans at sites along the Atlantic coast of Europe. J. Archaeol. Sci. 26, 717–722 (1999).
Lubell, D., Jackes, M., Schwarcz, H., Knyf, M. & Meiklejohn, C. The Mesolithic–Neolithic transition in Portugal: isotopic and dental evidence of diet. J. Archaeol. Sci. 21, 201–216 (1994).
Richards, M. P. & Mellars, P. A. Stable isotopes and the seasonality of the Oronsay middens. Antiquity 72, 178–184 (1998).
Bonsall, C. et al. Mesolithic and early Neolithic in the Iron Gates: A Palaeodietary perspective. J. Eur. Archaeol. 5, 50–92 (1997).
Abedi, E. & Sahari, M. A. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci. Nutr. 2, 443–463 (2014).
Simopoulos, A. P. Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain. Mol. Neurobiol. 44, 203–215 (2011).
Mannino, M. A., Thomas, K. D., Leng, M. J., Di Salvo, R. & Richards, M. P. Stuck to the shore? Investigating prehistoric hunter–gatherer subsistence, mobility and territoriality in a Mediterranean coastal landscape through isotope analyses on marine mollusc shell carbonates and human bone collagen. Quat. Int. 244, 88–104 (2011).
Mannino, M. A. et al. Origin and diet of the prehistoric hunter–gatherers on the mediterranean island of Favignana (Egadi Islands, Sicily). PLoS One 7, e49802 (2012).
Lightfoot, E., Boneva, B., Miracle, P. T., Šlaus, M. & O'Connell, T. C. Exploring the Mesolithic and Neolithic transition in Croatia through isotopic investigations. Antiquity 85, 73–86 (2011).
Bocquet-Appel, J.-P., Naji, S., Vander Linden, M. & Kozlowski, J. Understanding the rates of expansion of the farming system in Europe. J. Archaeol. Sci. 39, 531–546 (2012).
Rowley-Conwy, P. Westward Ho! The spread of agriculture from central Europe to the Atlantic. Curr. Anthropol. 52, S431–S451 (2011).
Vigne, J.-D. in The Neolithic Demographic Transition and its Consequences (eds Bocquet-Appel, J.-P. & Bar-Yosef, O. ) 179–205 (Springer Science + Business Media, 2008).
Cramp, L. J. et al. Immediate replacement of fishing with dairying by the earliest farmers of the Northeast Atlantic archipelagos. Proc. R. Soc. B 281, 20132372 (2014).
Curry, A. Archaeology: the milk revolution. Nature 500, 20–22 (2013).
Salque, M. et al. Earliest evidence for cheese making in the sixth millennium bc in northern Europe. Nature 493, 522–525 (2013).
Lidén, K., Eriksson, G., Nordqvist, B., Götherström, A. & Bendixen, E. “The wet and the wild followed by the dry and the tame” — or did they occur at the same time? Diet in Mesolithic – Neolithic southern Sweden. Antiquity 78, 23–33 (2004).
Rottoli, M. & Castiglioni, E. Prehistory of plant growing and collecting in northern Italy, based on seed remains from the early Neolithic to the Chalcolithic (c. 5600–2100 cal b.c.). Veg. Hist. Archaeobot. 18, 91–103 (2009).
Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).
Li, J. Z. et al. Worldwide human relationships inferred from genome-wide patterns of variation. Science 319, 1100–1104 (2008).
Nelson, M. R. et al. The Population Reference Sample, POPRES: a resource for population, disease, and pharmacological genetics research. Am. J. Hum. Genet. 83, 347–358 (2008).
Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).
The UK10 Consortium. The UK10K project identifies rare variants in health and disease. Nature 526, 82–90 (2015).
Browning, B. L. & Browning, S. R. Genotype imputation with millions of reference samples. Am. J. Hum. Genet. 98, 116–126 (2016).
Gamba, C. et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 5, 5257 (2014).
Barrett, J. C., Fry, B., Maller, J. & Daly, M. J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).
Paradis, E. pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–420 (2010).
Dannemann, M., Andres, A. M. & Kelso, J. Introgression of Neandertal- and Denisovan-like haplotypes contributes to adaptive variation in human Toll-like receptors. Am. J. Hum. Genet. 98, 22–33 (2016).
Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).
Gazave, E. et al. Neutral genomic regions refine models of recent rapid human population growth. Proc. Natl Acad. Sci. USA 111, 757–762 (2014).
Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).
Fay, J. C. & Wu, C. I. Hitchhiking under positive Darwinian selection. Genetics 155, 1405–1413 (2000).
Voight, B. F., Kudaravalli, S., Wen, X. & Pritchard, J. K. A map of recent positive selection in the human genome. PLoS Biol. 4, e72 (2006).
Szpiech, Z. A. & Hernandez, R. D. selscan: an efficient multithreaded program to perform EHH-based scans for positive selection. Mol. Biol. Evol. 31, 2824–2827 (2014).
Gautier, M. & Vitalis, R. rehh: an R package to detect footprints of selection in genome-wide SNP data from haplotype structure. Bioinformatics 28, 1176–1177 (2012).
Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).
Wang, J. et al. Factorbook.org: a Wiki-based database for transcription factor-binding data generated by the ENCODE consortium. Nucleic Acids Res. 41, D171–D176 (2013).
Acknowledgements
We thank M. Slatkin and J. Schraiber for their help in running their software, D. Reich and I. Mathieson for making their data publicly available, L. Arbiza, C. Liang, D. Marburgh, E. Li, K. Kothapalli, T. Brenna and all the members of the Keinan laboratory for helpful discussion and comments on the manuscript. This work was supported by the National Institutes of Health (grants R01HG006849 and R01GM108805 to A.K.) and the Edward Mallinckrodt Jr Foundation (A.K.).
Author information
Authors and Affiliations
Contributions
A.K. and K.Y. conceived and designed the project; K.Y. performed data collection and analysis, with contributions from D.W. and F.G.; K.Y. and A.K. interpreted the results, with contribution from O.B.-Y. on the anthropological perspective; K.Y. and A.K. wrote the manuscript. All authors read, edited and approved the final version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Notes; Supplementary Methods; Supplementary Tables 2–9; Supplementary Figures 1–32. (PDF 12959 kb)
Supplementary Table 1
Ancient DNAs used in this study. (XLSX 26 kb)
Supplementary Data 1
Computational scripts developed in this study. (ZIP 231 kb)
Rights and permissions
About this article
Cite this article
Ye, K., Gao, F., Wang, D. et al. Dietary adaptation of FADS genes in Europe varied across time and geography. Nat Ecol Evol 1, 0167 (2017). https://doi.org/10.1038/s41559-017-0167
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41559-017-0167
This article is cited by
-
Role of plasma fatty acid in age-related macular degeneration: insights from a mendelian randomization analysis
Lipids in Health and Disease (2024)
-
The selection landscape and genetic legacy of ancient Eurasians
Nature (2024)
-
The STROMICS genome study: deep whole-genome sequencing and analysis of 10K Chinese patients with ischemic stroke reveal complex genetic and phenotypic interplay
Cell Discovery (2023)
-
Genome-wide analysis identifies genetic effects on reproductive success and ongoing natural selection at the FADS locus
Nature Human Behaviour (2023)
-
Genetic variation and microRNA targeting of A-to-I RNA editing fine tune human tissue transcriptomes
Genome Biology (2021)