Five palaeobiological laws needed to understand the evolution of the living biota


The foundations of several disciplines can be expressed as simple quantitative laws, for example, Newton's laws or the laws of thermodynamics. Here I present five laws derived from fossil data that describe the relationships among species extinction and longevity, species richness, origination rates, extinction rates and diversification. These statements of our palaeobiological knowledge constitute a dimension largely hidden from view when studying the living biota, which are nonetheless crucial to the study of evolution and ecology even for groups with poor or non-existent fossil records. These laws encapsulate: the critical fact of extinction; that species are typically geologically short-lived, and thus that the number of extinct species typically dwarfs the number of living species; that extinction and origination rates typically have similar magnitudes; and, that significant extinction makes it difficult to infer much about a clade's early history or its current diversity dynamics from the living biota alone. Although important strides are being made to integrate these core palaeontological findings into our analysis of the living biota, this knowledge needs to be incorporated more widely if we are to understand their evolutionary dynamics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The importance of taking into account extinction when making inferences from LTT plots.


  1. 1

    Slater, G. J., Harmon, L. J. & Alfaro, M. E. Integrating fossils with molecular phylogenies improves inferences of trait evolution. Dryad (2012).

  2. 2

    Stadler, T. Recovering speciation and extinction dynamics based on phylogenies. J. Evol. Biol. 26, 1203–1219 (2013).

    CAS  Article  Google Scholar 

  3. 3

    Morlon, H. Phylogenetic approaches for studying diversification. Ecol. Lett. 17, 508–525 (2014).

    Article  Google Scholar 

  4. 4

    Bacon, C. D. et al. Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proc. Natl Acad. Sci. USA 112, 6110–6115 (2015).

    CAS  Article  Google Scholar 

  5. 5

    Macleod, N. The geological extinction record: History, data, biases, and testing. Geol. Soc. Am. Spec. Pap. 505, SPE505-01 (2014).

    Google Scholar 

  6. 6

    Bailey, N. T. J. The Elements of Stochastic Processes, with Applications to the Natural Sciences (Wiley, 1964).

    Google Scholar 

  7. 7

    Raup, D. M. Mathematical models of cladogenesis. Paleobiology 11, 42–52 (1985). Pioneering paper in the statistical analysis of evolutionary birth–death processes.

    Article  Google Scholar 

  8. 8

    Van Valen, L. A new evolutionary law. Evol. Theory 1, 1–30 (1973).

    Google Scholar 

  9. 9

    Raup, D. M. Taxonomic survivorship curves and Van Valen's Law. Paleobiology 1, 82–96 (1975).

    Article  Google Scholar 

  10. 10

    Kendall, D. G. On the generalized ‘birth-and-death’ process. Ann. Math. Stat. 19, 1–15 (1948).

    Article  Google Scholar 

  11. 11

    Alroy, J. Quantitative Mammalian Biochronology and Biogeography of North America (Univ. Chicago, 1994).

    Google Scholar 

  12. 12

    Alroy, J. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127, 285–311 (1996).

    Article  Google Scholar 

  13. 13

    Bradley, R. et al. Revised checklist of North American mammals north of Mexico, 2014. Occas. Pap. Museum Texas Tech Univ. 327, 1–27 (2014).

    Google Scholar 

  14. 14

    Foote, M. & Miller, A. I. Principles of Paleontology (W. H. Freeman and Company, 2007). Comprehensive introduction to the analysis of the fossil record.

    Google Scholar 

  15. 15

    Meredith, R. W. et al. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334, 521–524 (2011).

    CAS  Article  Google Scholar 

  16. 16

    dos Reis, M. et al. Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proc. R. Soc. B 279, 3491–3500 (2012).

    Article  Google Scholar 

  17. 17

    Buckley, L. B. et al. Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals. Proc. R. Soc. B 277, 2131–2138 (2010).

    Article  Google Scholar 

  18. 18

    Jetz, W. & Fine, P. V. A. Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol. 10, e1001292 (2012).

  19. 19

    Kammer, T. W., Baumiller, T. K. & Ausich, W. I. Evolutionary significance of differential species longevity in Osagean–Meramecian (Mississippian) crinoid clades. Paleobiology 24, 155–176 (1998).

    Google Scholar 

  20. 20

    Crampton, J. S., Cooper, R. A., Sadler, P. M. & Foote, M. Greenhouse-icehouse transition in the Late Ordovician marks a step change in extinction regime in the marine plankton. Proc. Natl Acad. Sci. USA 113, 1498–1503 (2016).

    CAS  Article  Google Scholar 

  21. 21

    Horowitz, A. S., Blakely, R. F. & Macurda, D. B. J. Taxonomic survivorship within the Blastoidea (Echinodermata). J. Paleontol. 59, 543–550 (1985).

    Google Scholar 

  22. 22

    Norris, R. D. Biased extinction and evolutionary trends. Paleobiology 17, 388–399 (1991).

    Article  Google Scholar 

  23. 23

    Silvestro, D., Cascales-Miñana, B., Bacon, C. D. & Antonelli, A. Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record. New Phytol. 207, 425–436 (2015).

    Article  Google Scholar 

  24. 24

    Niklas, K. J., Tiffney, B. H. B. H. & Knoll, A. H. Patterns in vascular land plant diversification. Nature 303, 614–616 (1983).

    Article  Google Scholar 

  25. 25

    Marshall, C. R. & Quental, T. B. The uncertain role of diversity dependence in species diversification and the need to incorporate time-varying carrying capacities. Philos. Trans. B 371,(2016).

  26. 26

    Quental, T. B. & Marshall, C. R. Diversity dynamics: Molecular phylogenies need the fossil record. Trends Ecol. Evol. 25, 435–441 (2010). Summarizes the fact that many evolutionary processes can lead to similar looking phylogenies.

    Article  Google Scholar 

  27. 27

    Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543 (2014).

    Article  Google Scholar 

  28. 28

    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    CAS  Article  Google Scholar 

  29. 29

    Morlon, H., Parsons, T. L. & Plotkin, J. B. Reconciling molecular phylogenies with the fossil record. Proc. Natl Acad. Sci. USA 108, 16327–32 (2011).

    CAS  Article  Google Scholar 

  30. 30

    Reyes, E., Morlon, H. & Sauquet, H. Presence in Mediterranean hotspots and floral symmetry affect speciation and extinction rates in Proteaceae. New Phytol. 207, 401–410 (2015).

    Article  Google Scholar 

  31. 31

    Liow, L. H., Quental, T. B. & Marshall, C. R. When can decreasing diversification rates be detected with molecular phylogenies and the fossil record? Syst. Biol. 59, 646–659 (2010).

    Article  Google Scholar 

  32. 32

    Quental, T. B. & Marshall, C. R. How the Red Queen drives terrestrial mammals to extinction. Science 341, 290–292 (2013).

    CAS  Article  Google Scholar 

  33. 33

    Lim, J. Y. & Marshall, C. R. The true tempo of evolutionary radiation and decline revealed on the Hawaiian Archipelago. Nature 543, 710–713 (2017).

    CAS  Article  Google Scholar 

  34. 34

    Heath, T. A., Huelsenbeck, J. P. & Stadler, T. The fossilized birth–death process for coherent calibration of divergence-time estimates. Proc. Natl Acad. Sci. USA 111, E2957–E2966 (2014).

    CAS  Article  Google Scholar 

  35. 35

    Zhang, C., Stadler, T., Klopfstein, S., Heath, T. A. & Ronquist, F. Total-evidence dating under the fossilized birth–death process. Syst. Biol. 65, 228–249 (2016).

    Article  Google Scholar 

  36. 36

    Losos, J. B. Seeing the forest for the trees: the limitations of phylogenies in comparative biology. (American Society of Naturalists Address). Am. Nat. 177, 709–27 (2011).

    Article  Google Scholar 

  37. 37

    Foote, M. Origination and extinction through the Phanerozoic: a new approach. J. Geol. 111, 125–148 (2003).

    Article  Google Scholar 

  38. 38

    Foote, M. Pulsed origination and extinction in the marine realm. Paleobiology 31, 6–20 (2005).

    Article  Google Scholar 

  39. 39

    Lu, P. J., Yogo, M. & Marshall, C. R. Phanerozoic marine biodiversity dynamics in light of the incompleteness of the fossil record. Proc. Natl Acad. Sci. USA 103, 2736–2739 (2006).

    CAS  Article  Google Scholar 

  40. 40

    Condamine, F. L., Nagalingum, N. S., Marshall, C. R. & Morlon, H. Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating. BMC Evol. Biol. 15, 65 (2015).

  41. 41

    Marshall, C. & Schultze, H.-P. Relative importance of molecular, neontological, and paleontological data in understanding the biology of the vertebrate invasion of land. J. Mol. Evol. 35, 93–101 (1992).

    CAS  Article  Google Scholar 

  42. 42

    Coates, M. I. & Clack, J. A. Fish-like gills and breathing in the earliest known tetrapod. Nature 352, 234–236 (1991).

    Article  Google Scholar 

  43. 43

    Coates, M. I. & Clack, J. A. Polydactyly in the earliest known tetrapod limbs. Nature 347, 66–69 (1990).

    Article  Google Scholar 

  44. 44

    Campbell, K. S. W. & Barwick, R. E. Geological and palaeontological information and phylogenetic hypotheses. Geol. Mag. 125, 207–227 (1988).

    Article  Google Scholar 

  45. 45

    Rozhnov, S. V. Symmetry of echinoderms: From initial bilaterally-asymmetric metamerism to pentaradiality. Nat. Sci. 6, 171–183 (2014).

    Google Scholar 

  46. 46

    Brusatte, S. L., O’Connor, J. K. & Jarvis, E. D. The origin and diversification of birds. Curr. Biol. 25, R888–R898 (2015).

    CAS  Article  Google Scholar 

  47. 47

    White, T. D., Lovejoy, C. O., Asfaw, B., Carlson, J. P. & Suwa, G. Neither chimpanzee nor human, Ardipithecus reveals the surprising ancestry of both. Proc. Natl Acad. Sci. USA 112, 4877–4884 (2015).

    CAS  Article  Google Scholar 

  48. 48

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    CAS  Article  Google Scholar 

  49. 49

    Steeman, M. E. et al. Radiation of extant cetaceans driven by restructuring of the oceans. Syst. Biol. 58, 573–585 (2009).

    Article  Google Scholar 

  50. 50

    Quental, T. B. & Marshall, C. R. The molecular phylogenetic signature of clades in decline. PLoS ONE 6, e25780 (2011).

  51. 51

    Bininda-emonds, O. R. P. et al. The delayed rise of present-day mammals. Nature 446, 507–512 (2007).

    CAS  Article  Google Scholar 

  52. 52

    Alroy, J. The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation. Syst. Biol. 48, 107–118 (1999).

    CAS  Article  Google Scholar 

  53. 53

    Halliday, T. J. D., Upchurch, P. & Goswami, A. Eutherians experienced elevated evolutionary rates in the immediate aftermath of the Cretaceous–Palaeogene mass extinction. Proc. R. Soc. B 283, 20153026 (2016).

  54. 54

    Alroy, J. Accurate and precise estimates of origination and extinction rates. Paleobiology 40, 374–397 (2014).

    Article  Google Scholar 

  55. 55

    Alroy, J. A more precise speciation and extinction rate estimator. Paleobiology 41, 633–639 (2015).

    Article  Google Scholar 

  56. 56

    Silvestro, D., Schnitzler, J., Liow, L. H., Antonelli, A. & Salamin, N. Bayesian estimation of speciation and extinction from incomplete fossil occurrence data. Syst. Biol. 63, 349–367 (2014).

    Article  Google Scholar 

  57. 57

    Silvestro, D., Antonelli, A., Salamin, N. & Quental, T. B. The role of clade competition in the diversification of North American canids. Proc. Natl Acad. Sci. USA 112, 8684–8689 (2015).

    CAS  Article  Google Scholar 

Download references


This manuscript has benefited from feedback from S. Finnegan, S. Holland, J. Y. Lim, T. Quental, and especially from S.-P. Quek, D. Varajao de Latorre and reviews from M. Foote, D. Silvestro.

Author information



Corresponding author

Correspondence to Charles R. Marshall.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marshall, C. Five palaeobiological laws needed to understand the evolution of the living biota. Nat Ecol Evol 1, 0165 (2017).

Download citation

Further reading


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing