Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Climate warming reduces gut microbiota diversity in a vertebrate ectotherm

Abstract

Climate change is now considered to be the greatest threat to biodiversity and ecological networks, but its impacts on the bacterial communities associated with plants and animals remain largely unknown. Here, we studied the consequences of climate warming on the gut bacterial communities of an ectotherm, the common lizard (Zootoca vivipara), using a semi-natural experimental approach. We found that 2–3 °C warmer climates cause a 34% loss of populations’ microbiota diversity, with possible negative consequences for host survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impact of climate on various outcomes.

Similar content being viewed by others

References

  1. Singer, A., Travis, J. M. J. & Johst, K. Oikos 122, 358–366 (2013).

    Article  Google Scholar 

  2. Parmesan, C. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Article  Google Scholar 

  3. Bestion, E., Teyssier, A., Richard, M., Clobert, J. & Cote, J. PLoS Biol. 13, e1002281 (2015).

    Article  Google Scholar 

  4. Dunn, R. R., Harris, N. C., Colwell, R. K., Koh, L. P. & Sodhi, N. S. Proc. Biol. Sci. 276, 3037–3045 (2009).

    Article  Google Scholar 

  5. Gilbert, S. F., Sapp, J. & Tauber, A. I. Q. Rev. Biol. 87, 325–341 (2012).

    Article  Google Scholar 

  6. Ruiz-Rodríguez, M. et al. J. Avian Biol. 40, 42–48 (2009).

    Article  Google Scholar 

  7. Carey, H. V., Walters, W. A. & Knight, R. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R33–R42 (2013).

    Article  CAS  Google Scholar 

  8. Sullam, K. E. et al. Mol. Ecol. 21, 3363–3378 (2012).

    Article  Google Scholar 

  9. Lurgi, M., López, B. C. & Montoya, J. M. Phil. Trans. R. Soc. B 367, 3050–3057 (2012).

    Article  Google Scholar 

  10. White, J., Richard, M., Massot, M. & Meylan, S. PLoS ONE 6, e22339 (2011).

    Article  CAS  Google Scholar 

  11. Bolnick, D. I. et al. Ecol. Lett. 17, 979–987 (2014).

    Article  Google Scholar 

  12. Sison-Mangus, M. P., Mushegian, A. A. & Ebert, D. ISME J. 9, 59–67 (2015).

    Article  Google Scholar 

  13. Turnbaugh, P. J. et al. Nature 449, 804–810 (2007).

    Article  CAS  Google Scholar 

  14. Kim, B.-J., Lee, S.-Y., Kim, H.-B., Lee, E. & Hong, S.-J. Allergy Asthma Immunol. Res. 6, 389–400 (2014).

    Article  CAS  Google Scholar 

  15. Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, C. D. Science 341, 514–519 (2013).

    Article  CAS  Google Scholar 

  16. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  17. Kohl, K. D. & Yahn, J. Environ. Microbiol. 18, 1561–1565 (2016).

    Article  Google Scholar 

  18. Dillon, M. E., Wang, G. & Huey, R. B. Nature 467, 704–706 (2010).

    Article  CAS  Google Scholar 

  19. Le Chatelier, E. et al. Nature 500, 541–546 (2013).

    Article  CAS  Google Scholar 

  20. Mandrioli, M. Invertebrate Surviv. J. 9, 58–63 (2012).

    Google Scholar 

  21. Kikuchi, Y. et al. mBio 7, e01578-16 (2016).

    Article  Google Scholar 

  22. Kohl, K. D. et al. Mol. Ecol. 26, 1175–1189 (2017).

    Article  Google Scholar 

  23. Colston, T. J., Noonan, B. P. & Jackson, C. R. PLoS ONE 10, e0128793 (2015).

    Article  Google Scholar 

  24. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Nature 489, 220–230 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Cave, B. Rémurier, L. Geidel and A. Fournier for fieldwork assistance, H. Holota for performing genetic extractions, and J. Chave and G. Yvon-Durocher for their helpful comments on the manuscript. We are also grateful to the genotoul bioinformatics platform Toulouse Midi-Pyrenees (Bioinfo Genotoul) for providing computing and storage resources. This work was carried out at the Station d’Ecologie Theorique et Experimentale (Centre National de la Recherche Scientifique (CNRS) UMR 5321) and the Laboratoire Evolution et Diversité Biologique (CNRS, Université Paul Sabatier, Ecole Nationale Supérieure de Formation de l’Enseignement Agricole (ENSFEA), UMR 5174), and was supported by the Laboratoires d’Excellence TULIP (ANR-10-LABX-41) and CEBA (ANR-10-LABX-25-01). J.C. was supported by an ANR-12-JSV7-0004-01, and J.W. by an AOI Fonds Scientifique – ENSFEA. This work was supported by an ‘Investissements d'avenir’ programme from the Agence Nationale de la recherche number ANR-11-INBS-0001AnaEE-Services.

Author information

Authors and Affiliations

Authors

Contributions

E.B., J.W. and J.C. designed the study. E.B. and J.C. performed the experiments. E.B. collected genetic data, L.D.G. and J.W. extracted microbial genetic data, and M.R. extracted and analysed lizard genetic data. S.J., J.W. and L.Z. performed molecular and bioinformatics analyses, and E.B., J.C., L.D.G. and S.J. analysed the data. E.B. wrote the first draft, and J.C., J.W., S.J. and L.Z. contributed significantly to the writing of the manuscript.

Corresponding author

Correspondence to Elvire Bestion.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Results, Supplementary References, Supplementary Figures 1–5, Supplementary Tables 1–20. (PDF 1068 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bestion, E., Jacob, S., Zinger, L. et al. Climate warming reduces gut microbiota diversity in a vertebrate ectotherm. Nat Ecol Evol 1, 0161 (2017). https://doi.org/10.1038/s41559-017-0161

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-017-0161

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing