Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The energy expansions of evolution

Abstract

The history of the life–Earth system can be divided into five ‘energetic’ epochs, each featuring the evolution of life forms that can exploit a new source of energy. These sources are: geochemical energy, sunlight, oxygen, flesh and fire. The first two were present at the start, but oxygen, flesh and fire are all consequences of evolutionary events. Since no category of energy source has disappeared, this has, over time, resulted in an expanding realm of the sources of energy available to living organisms and a concomitant increase in the diversity and complexity of ecosystems. These energy expansions have also mediated the transformation of key aspects of the planetary environment, which have in turn mediated the future course of evolutionary change. Using energy as a lens thus illuminates patterns in the entwined histories of life and Earth, and may also provide a framework for considering the potential trajectories of life–planet systems elsewhere.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Key events during the energy expansions of evolution.

References

  1. 1

    Thauer, R. K., Jungermann, K. & Decker, K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100–180 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Amend, J. P. & Shock, E. L. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol. Rev. 25, 175–243 (2001).

    CAS  PubMed  Google Scholar 

  3. 3

    Vernadsky, W. La Biosphère (Félix Alcan, 1929).

    Google Scholar 

  4. 4

    Cloud, P. E. Atmospheric and hydrospheric evolution on the primitive earth. Science 160, 729–736 (1968).

    CAS  PubMed  Google Scholar 

  5. 5

    Smil, V. General Energetics: Energy in the Biosphere and Civilization (John Wiley and Sons, 1991).

    Google Scholar 

  6. 6

    Lenton, T. & Watson, A. Revolutions that Made the Earth (Oxford Univ. Press, 2011).

    Google Scholar 

  7. 7

    Lenton, T. M., Pichler, P.-P. & Weisz, H. Revolutions in energy input and material cycling in Earth history and human history. Earth Syst. Dynam. 7, 353–370 (2016).

    Google Scholar 

  8. 8

    Amend, J. P., McCollom, T. M., Hentscher, M. & Bach, W. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types. Geochim. Cosmochim. Acta 75, 5736–5748 (2011).

    CAS  Google Scholar 

  9. 9

    Mayhew, L. E., Ellison, E. T., McCollom, T. M., Trainor, T. P. & Templeton, A. S. Hydrogen generation from low-temperature water–rock reactions. Nat. Geosci. 6, 478–484 (2013).

    CAS  Google Scholar 

  10. 10

    McCollom, T. M. & Seewald, J. S. Serpentinites, hydrogen, and life. Elements 9, 129–134 (2013).

    CAS  Google Scholar 

  11. 11

    McDermott, J. M., Seewald, J. S., German, C. R. & Sylva, S. P. Pathways for abiotic organic synthesis at submarine hydrothermal fields. Proc. Natl Acad. Sci. USA 112, 7668–7672 (2015).

    CAS  PubMed  Google Scholar 

  12. 12

    Russell, M. J., Hall, A. J. & Martin, W. Serpentinization as a source of energy at the origin of life. Geobiology 8, 355–371 (2010).

    CAS  PubMed  Google Scholar 

  13. 13

    Lane, N., Allen, J. F. & Martin, W. How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays 32, 271–280 (2010).

    CAS  Google Scholar 

  14. 14

    Dibrova, D. V., Chudetsky, M. Y., Galperin, M. Y., Koonin, E. V. & Mulkidjanian, A. Y. The role of energy in the emergence of biology from chemistry. Orig. Life Evol. Biosph. 42, 459–468 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Sousa, F. L. et al. Early bioenergetic evolution. Phil. Trans. R. Soc. Lond. B 368, 20130088 (2013).

    Google Scholar 

  16. 16

    Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016).

    CAS  PubMed  Google Scholar 

  17. 17

    Ferry, J. G. & House, C. H. The stepwise evolution of early life driven by energy conservation. Mol. Biol. Evol. 23, 1286–1292 (2006).

    CAS  PubMed  Google Scholar 

  18. 18

    Rosing, M. 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from west Greenland. Science 283, 674–676 (1999).

    CAS  PubMed  Google Scholar 

  19. 19

    Pecoits, E. et al. Atmospheric hydrogen peroxide and Eoarchean iron formations. Geobiology 13, 1–14 (2015).

    CAS  PubMed  Google Scholar 

  20. 20

    Bell, E. A., Boehnke, P., Harrison, T. M. & Mao, W. L. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc. Natl Acad. Sci. USA 112, 14518–14521 (2015).

    CAS  PubMed  Google Scholar 

  21. 21

    Nutman, A. P., Bennett, V. C., Friend, C. R. L., Van Kranendonk, M. J. & Chivas, A. R. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537, 535–538 (2016).

    CAS  PubMed  Google Scholar 

  22. 22

    Dodd, M. S. et al. Evidence for early life in Earth's oldest hydrothermal vent precipitates. Nature 543, 60–64 (2017).

    CAS  PubMed  Google Scholar 

  23. 23

    Papineau, D. Mineral environments on the earliest Earth. Elements 6, 25–30 (2010).

    CAS  Google Scholar 

  24. 24

    Schönheit, P., Buckel, W. & Martin, W. F. On the origin of heterotrophy. Trends Microbiol. 24, 12–25 (2016).

    PubMed  Google Scholar 

  25. 25

    Catling, D. C. in Treatise on Geochemistry 2nd edn (eds Holland, H. & Turekian, K. ) 6, 177–195 (Elsevier, 2014).

    Google Scholar 

  26. 26

    Nisbet, E. G. & Fowler, C. M. R. Archaean metabolic evolution of microbial mats. Proc. R. Soc. Lond. B 266, 2375–2382 (1999).

    Google Scholar 

  27. 27

    Brazelton, W. J., Mehta, M. P., Kelley, D. S. & Baross, J. A. Physiological differentiation within a single-species biofilm fueled by serpentinization. mBio 2, e00127–11 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Schink, B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61, 262–280 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Nealson, K. H. & Conrad, P. G. Life: past, present and future. Phil. Trans. R. Soc. Lond. B 354, 1923–1939 (1999).

    CAS  Google Scholar 

  30. 30

    Fenchel, T. & Finlay, B. J. Ecology and Evolution in Anoxic Worlds (Oxford Univ. Press, 1995).

    Google Scholar 

  31. 31

    Forterre, P. & Prangishvili, D. The origin of viruses. Res. Microbiol. 160, 466–472 (2009).

    CAS  PubMed  Google Scholar 

  32. 32

    Kharecha, P., Kasting, J. & Siefert, J. A coupled atmosphere–ecosystem model of the early Archean Earth. Geobiology 3, 53–76 (2005).

    CAS  Google Scholar 

  33. 33

    Canfield, D. E., Rosing, M. T. & Bjerrum, C. Early anaerobic metabolisms. Phil. Trans. R. Soc. Lond. B 361, 1819–1836 (2006).

    CAS  Google Scholar 

  34. 34

    Sleep, N. H. & Bird, D. K. Niches of the pre-photosynthetic biosphere and geologic preservation of Earth's earliest ecology. Geobiology 5, 101–117 (2007).

    CAS  Google Scholar 

  35. 35

    Fischer, W. W., Hemp, J. & Johnson, J. E. Evolution of oxygenic photosynthesis. Annu. Rev. Earth Planet. Sci. 44, 647–683 (2016).

    CAS  Google Scholar 

  36. 36

    Tice, M. M. & Lowe, D. R. Hydrogen-based carbon fixation in the earliest known photosynthetic organisms. Geology 34, 37–40 (2006).

    CAS  Google Scholar 

  37. 37

    Hohmann-Marriott, M. F. & Blankenship, R. E. Evolution of photosynthesis. Annu. Rev. Plant Biol. 62, 515–548 (2011).

    CAS  PubMed  Google Scholar 

  38. 38

    Zubkov, M. V. Photoheterotrophy in marine prokaryotes. J. Plankton Res. 31, 933–938 (2009).

    CAS  Google Scholar 

  39. 39

    Bosak, T., Greene, S. E. & Newman, D. K. A likely role for anoxygenic photosynthetic microbes in the formation of ancient stromatolites. Geobiology 5, 119–126 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S. & Isozaki, Y. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440, 516–519 (2006).

    CAS  Google Scholar 

  41. 41

    Arndt, N. T. & Nisbet, E. G. Processes on the young Earth and the habitats of early Life. Annu. Rev. Earth Planet. Sci. 40, 521–549 (2012).

    CAS  Google Scholar 

  42. 42

    Sagan, C. & Mullen, G. Earth and Mars: evolution of atmospheres and surface temperatures. Science 177, 52–56 (1972).

    CAS  PubMed  Google Scholar 

  43. 43

    Haqq-Misra, J. D., Domagal-Goldman, S. D., Kasting, P. J. & Kasting, J. F. A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8, 1127–1137 (2008).

    CAS  PubMed  Google Scholar 

  44. 44

    Catling, D. C. & Claire, M. W. How Earth's atmosphere evolved to an oxic state: a status report. Earth Planet. Sci. Lett. 237, 1–20 (2005).

    CAS  Google Scholar 

  45. 45

    Draganić, I. G. Radiolysis of water: a look at its origin and occurrence in the nature. Radiat. Phys. Chem. 72, 181–186 (2005).

    Google Scholar 

  46. 46

    Bekker, A. et al. Dating the rise of atmospheric oxygen. Nature 427, 117–120 (2004).

    CAS  Google Scholar 

  47. 47

    Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth's early ocean and atmosphere. Nature 506, 307–315 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Hamilton, T. L., Bryant, D. A. & Macalady, J. L. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans. Environ. Microbiol. 18, 325–340 (2016).

    CAS  PubMed  Google Scholar 

  49. 49

    MacGregor, A. M. The problem of the Precambrian atmosphere. S. Afr. J. Sci. 24, 155–172 (1927).

    CAS  Google Scholar 

  50. 50

    Tomitani, A., Knoll, A. H., Cavanaugh, C. M. & Ohno, T. The evolutionary diversification of cyanobacteria: molecular–phylogenetic and paleontological perspectives. Proc. Natl Acad. Sci. USA 103, 5442–5447 (2006).

    CAS  PubMed  Google Scholar 

  51. 51

    Bosak, T., Liang, B., Sim, M. S. & Petroff, A. P. Morphological record of oxygenic photosynthesis in conical stromatolites. Proc. Natl Acad. Sci. USA 106, 10939–10943 (2009).

    CAS  PubMed  Google Scholar 

  52. 52

    Farquhar, J., Zerkle, A. L. & Bekker, A. Geological constraints on the origin of oxygenic photosynthesis. Photosynth. Res. 107, 11–36 (2011).

    CAS  PubMed  Google Scholar 

  53. 53

    Kasting, J. F. What caused the rise of atmospheric O2? Chem. Geol. 362, 13–25 (2013).

    CAS  Google Scholar 

  54. 54

    Goldblatt, C., Lenton, T. M. & Watson, A. J. Bistability of atmospheric oxygen and the Great Oxidation. Nature 443, 683–686 (2006).

    CAS  PubMed  Google Scholar 

  55. 55

    Papineau, D., Walker, J. J., Mojzsis, S. J. & Pace, N. R. Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl. Environ. Microbiol. 71, 4822–4832 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Watanabe, Y., Martini, J. E. & Ohmoto, H. Geochemical evidence for terrestrial ecosystems 2.6 billion years ago. Nature 408, 574–578 (2000).

    CAS  PubMed  Google Scholar 

  57. 57

    Stüeken, E. E., Catling, D. C. & Buick, R. Contributions to late Archaean sulphur cycling by life on land. Nat. Geosci. 5, 722–725 (2012).

    Google Scholar 

  58. 58

    Kasting, J. F. & Catling, D. Evolution of a habitable planet. Annu. Rev. Astron. Astrophys. 41, 429–463 (2003).

    CAS  Google Scholar 

  59. 59

    Claire, M., Catling, D. C. & Zahnle, K. J. Biogeochemical modelling of the rise in atmospheric oxygen. Geobiology 4, 239–269 (2006).

    CAS  Google Scholar 

  60. 60

    Sverjensky, D. A. & Lee, N. The Great Oxidation Event and mineral diversification. Elements 6, 31–36 (2010).

    CAS  Google Scholar 

  61. 61

    Hazen, R. M. et al. Mineral evolution. Am. Mineral. 93, 1693–1720 (2008).

    CAS  Google Scholar 

  62. 62

    Harrison, J. P. et al. Aerobically respiring prokaryotic strains exhibit a broader temperature-pH-salinity space for cell division than anaerobically respiring and fermentative strains. J. R. Soc. Interface 12, 20150658 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. 63

    Melezhik, V. A. et al. in Reading the Archive of Earth's Oxygenation (eds Melezhik, V. A. et al.) 1059–1109 (Springer, 2013).

    Google Scholar 

  64. 64

    Zahnle, K., Claire, M. & Catling, D. The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology 4, 271–283 (2006).

    CAS  Google Scholar 

  65. 65

    Daines, S. J. & Lenton, T. M. The effect of widespread early aerobic marine ecosystems on methane cycling and the Great Oxidation. Earth Planet. Sci. Lett. 434, 42–51 (2016).

    CAS  Google Scholar 

  66. 66

    Catling, D. C., Glein, C. R., Zahnle, K. J. & McKay, C. P. Why O2 is required by complex life on habitable planets and the concept of planetary “oxygenation time”. Astrobiology 5, 415–438 (2005).

    CAS  PubMed  Google Scholar 

  67. 67

    Haqq-Misra, J., Kasting, J. F. & Lee, S. Availability of O2 and H2O2 on pre-photosynthetic Earth. Astrobiology 11, 293–302 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Olson, S. L., Kump, L. R. & Kasting, J. F. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem. Geol. 362, 35–43 (2013).

    CAS  Google Scholar 

  69. 69

    Lenton, T. M. & Daines, S. J. Biogeochemical transformations in the history of the ocean. Annu. Rev. Mar. Sci. 9, 31–58 (2017).

    Google Scholar 

  70. 70

    Naqui, A., Chance, B. & Cadenas, E. Reactive oxygen intermediates in biochemistry. Annu. Rev. Biochem. 55, 137–166 (1986).

    CAS  PubMed  Google Scholar 

  71. 71

    Imlay, J. A. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol. 11, 443–454 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Towe, K. M. Oxygen-collagen priority and the early metazoan fossil record. Proc. Natl Acad. Sci. USA 65, 781–788 (1970).

    CAS  PubMed  Google Scholar 

  73. 73

    Williams, T. A., Foster, P. G., Cox, C. J. & Embley, T. M. An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504, 231–236 (2013).

    CAS  PubMed  Google Scholar 

  74. 74

    Martin, W. F., Garg, S. & Zimorski, V. Endosymbiotic theories for eukaryote origin. Phil. Trans. R. Soc. Lond. B 370, 20140330 (2015).

    Google Scholar 

  75. 75

    Keeling, P. J. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu. Rev. Plant Biol. 64, 583–607 (2013).

    CAS  PubMed  Google Scholar 

  76. 76

    Butterfield, N. J. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26, 386–404 (2000).

    Google Scholar 

  77. 77

    Knoll, A. H. Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb. Perspect. Biol. 6, a016121 (2014).

    PubMed  PubMed Central  Google Scholar 

  78. 78

    Müller, M. et al. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 76, 444–495 (2012).

    PubMed  PubMed Central  Google Scholar 

  79. 79

    Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).

    CAS  PubMed  Google Scholar 

  80. 80

    van der Giezen, M. & Lenton, T. M. The rise of oxygen and complex life. J. Eukaryot. Microbiol. 59, 111–113 (2012).

    CAS  PubMed  Google Scholar 

  81. 81

    Lane, N. & Martin, W. The energetics of genome complexity. Nature 467, 929–934 (2010).

    CAS  PubMed  Google Scholar 

  82. 82

    Douglas, A. E. Symbiosis as a general principle in eukaryotic evolution. Cold Spring Harb. Perspect. Biol. 6, a016113 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. 83

    Yutin, N., Wolf, M. Y., Wolf, Y. I. & Koonin, E. V. The origins of phagocytosis and eukaryogenesis. Biol. Direct 4, 9 (2009).

    PubMed  PubMed Central  Google Scholar 

  84. 84

    Narbonne, G. M. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annu. Rev. Earth Planet. Sci. 33, 421–442 (2005).

    CAS  Google Scholar 

  85. 85

    Payne, J. L. et al. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proc. Natl Acad. Sci. USA 106, 24–27 (2009).

    CAS  PubMed  Google Scholar 

  86. 86

    Stanley, S. M. An ecological theory for the sudden origin of multicellular life in the late Precambrian. Proc. Natl Acad. Sci. USA 70, 1486–1489 (1973).

    CAS  PubMed  Google Scholar 

  87. 87

    Butterfield, N. J. Macroevolution and macroecology through deep time. Palaeontology 50, 41–55 (2007).

    Google Scholar 

  88. 88

    Bengtson, S. Origins and early evolution of predation. Paleontol. Soc. Papers 8, 289–318 (2002).

    Google Scholar 

  89. 89

    Porter, S. M. & Knoll, A. H. Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology 26, 360–385 (2000).

    Google Scholar 

  90. 90

    Porter, S. The rise of predators. Geology 39, 607–608 (2011).

    Google Scholar 

  91. 91

    Cohen, P. A. & Knoll, A. H. Scale microfossils from the mid-Neoproterozoic Fifteenmile Group, Yukon Territory. J. Paleontol. 86, 775–800 (2012).

    Google Scholar 

  92. 92

    Knoll, A. H. & Lahr, D. J. G. in Multicellularity: Origins and Evolution (eds Niklas, K. J. & Neumann, S. D. ) 3–16 (MIT Press, 2016).

    Google Scholar 

  93. 93

    Rokas, A. The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu. Rev. Genet. 42, 235–251 (2008).

    CAS  PubMed  Google Scholar 

  94. 94

    Erwin, D. H. et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334, 1091–1097 (2011).

    CAS  PubMed  Google Scholar 

  95. 95

    Parfrey, L. W., Lahr, D., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011).

    CAS  PubMed  Google Scholar 

  96. 96

    Buschmann, H., Keller, M., Porret, N., Dietz, H. & Edwards, P. J. The effect of slug grazing on vegetation development and plant species diversity in an experimental grassland. Funct. Ecol. 19, 291–298 (2005).

    Google Scholar 

  97. 97

    Hutchinson, G. E. The paradox of the plankton. Am. Nat. 95, 137–145 (1961).

    Google Scholar 

  98. 98

    Ripple, W. J. & Beschta, R. L. Trophic cascades in Yellowstone: the first 15 years after wolf reintroduction. Biol. Conserv. 145, 205–213 (2012).

    Google Scholar 

  99. 99

    Butterfield, N. J. Animals and the invention of the Phanerozoic Earth system. Trends Ecol. Evol. 26, 81–87 (2011).

    PubMed  Google Scholar 

  100. 100

    Vermeij, G. J. The origin of skeletons. Palaios 4, 585–589 (1989).

    Google Scholar 

  101. 101

    Baumgartner, P. O. Mesozoic radiolarites–accumulation as a function of sea surface fertility on Tethyan margins and in ocean basins. Sedimentology 60, 292–318 (2013).

    Google Scholar 

  102. 102

    Kiessling, W. Towards an unbiased estimate of fluctuations in reef abundance and volume during the Phanerozoic. Biogeosciences 3, 15–27 (2006).

    Google Scholar 

  103. 103

    Kidwell, S. M. & Brenchley, P. J. Patterns in bioclastic accumulation through the Phanerozoic: Changes in input or in destruction? Geology 22, 1139–1143 (1994).

    Google Scholar 

  104. 104

    Stanley, S. M. Influence of seawater chemistry on biomineralization throughout Phanerozoic time: Paleontological and experimental evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 214–236 (2006).

    Google Scholar 

  105. 105

    Maliva, R. G., Knoll, A. H. & Siever, R. Secular change in chert distribution: a reflection of evolving biological participation in the silica cycle. Palaios 4, 519–532 (1989).

    CAS  PubMed  Google Scholar 

  106. 106

    Rost, B. & Riebesell, U. in Coccolithophores: From Molecular Processes to Global Impact (eds Thierstein, H. R. & Young, J. R. ) 99–125 (Springer, 2004).

    Google Scholar 

  107. 107

    Fowler, S. W. & Knauer, G. A. Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog. Oceanog. 16, 147–194 (1986).

    Google Scholar 

  108. 108

    Lavery, T. J. et al. Iron defecation by sperm whales stimulates carbon export in the Southern Ocean. Proc. R. Soc. Lond. B 277, 3527–3531 (2010).

    Google Scholar 

  109. 109

    Hutchinson, G. E. The biogeochemistry of vertebrate excretion. Bull. Am. Mus. Nat. Hist. 96, 1–554 (1950).

    Google Scholar 

  110. 110

    Carbone, C. & Narbonne, G. M. When life got smart: the evolution of behavioral complexity through the Ediacaran and early Cambrian of NW Canada. J. Paleontol. 88, 309–330 (2014).

    Google Scholar 

  111. 111

    Darwin, C. R. The Formation of Vegetable Mould, Through the Action of Worms, with Observations on Their Habits (John Murray, 1881).

    Google Scholar 

  112. 112

    Canfield, D. E. & Farquhar, J. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proc. Natl Acad. Sci. USA 106, 8123–8127 (2009).

    CAS  PubMed  Google Scholar 

  113. 113

    Boyle, R. A. et al. Stabilization of the coupled oxygen and phosphorus cycles by the evolution of bioturbation. Nat. Geosci. 7, 671–676 (2014).

    CAS  Google Scholar 

  114. 114

    Logan, G. A., Hayes, J. M., Hieshima, G. B. & Summons, R. E. Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376, 53–56 (1995).

    CAS  PubMed  Google Scholar 

  115. 115

    Christian, H. J. et al. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res. 108, 4005 (2003).

    Google Scholar 

  116. 116

    Wierzchowski, J., Heathcott, M. & Flannigan, M. D. Lightning and lightning fire, central cordillera, Canada. Int. J. Wildland Fire 11, 41–51 (2002).

    Google Scholar 

  117. 117

    Yair, Y. New results on planetary lightning. Adv. Space Res. 50, 293–310 (2012).

    Google Scholar 

  118. 118

    Belcher, C. M. & McElwain, J. C. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science 321, 1197–1200 (2008).

    CAS  PubMed  Google Scholar 

  119. 119

    Belcher, C. M., Yearsley, J. M., Hadden, R. M., McElwain, J. C. & Rein, G. Baseline intrinsic flammability of Earth's ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proc. Natl Acad. Sci. USA 107, 22448–22453 (2010).

    CAS  PubMed  Google Scholar 

  120. 120

    Glasspool, I. J., Edwards, D. & Axe, L. Charcoal in the Silurian as evidence for the earliest wildfire. Geology 32, 381–383 (2004).

    Google Scholar 

  121. 121

    Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J. & Bradstock, R. A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16, 406–411 (2011).

    CAS  PubMed  Google Scholar 

  122. 122

    Bond, W. J., Woodward, F. I. & Midgley, G. F. The global distribution of ecosystems in a world without fire. New Phytol. 165, 525–538 (2005).

    CAS  PubMed  Google Scholar 

  123. 123

    Bond, W. J. & Scott, A. C. Fire and the spread of flowering plants in the Cretaceous. New Phytol. 188, 1137–1150 (2010).

    PubMed  Google Scholar 

  124. 124

    Moreau, C. S., Bell, C. D., Vila, R., Archibald, S. B. & Pierce, N. E. Phylogeny of the ants: diversification in the age of angiosperms. Science 312, 101–104 (2006).

    CAS  PubMed  Google Scholar 

  125. 125

    Cardinal, S. & Danforth, B. N. Bees diversified in the age of eudicots. Proc. R. Soc. Lond. B 280, 20122686 (2012).

    Google Scholar 

  126. 126

    Wilson, G. P. et al. Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature 483, 457–460 (2013).

    Google Scholar 

  127. 127

    Lenton, T. M. in Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (ed. Belcher, C. M. ) 289–308 (John Wiley and Sons, 2013).

    Google Scholar 

  128. 128

    Wrangham, R. W., Jones, J. H., Laden, G., Pilbeam, D. & Conklin-Brittain, N. The raw and the stolen: cooking and the ecology of human origins. Curr. Anthropol. 40, 567–594 (1999).

    CAS  PubMed  Google Scholar 

  129. 129

    Gowlett, J. A. J. & Wrangham, R. W. Earliest fire in Africa: towards the convergence of archaeological evidence and the cooking hypothesis. Azania 48, 5–30 (2013).

    Google Scholar 

  130. 130

    Carmody, R. N., Weintraub, G. S. & Wrangham, R. W. Energetic consequences of thermal and nonthermal food processing. Proc. Natl Acad. Sci. USA 108, 19199–19203 (2011).

    CAS  PubMed  Google Scholar 

  131. 131

    Groopman, E. E., Carmody, R. N. & Wrangham, R. W. Cooking increases net energy gain from a lipid-rich food. Am. J. Phys. Anthropol. 156, 11–18 (2015).

    PubMed  Google Scholar 

  132. 132

    Lotka, A. J. Elements of Physical Biology (Williams and Wilkins, 1925).

    Google Scholar 

  133. 133

    Smil, V. Enriching the Earth (MIT Press, 2001).

    Google Scholar 

  134. 134

    Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008).

    CAS  Google Scholar 

  135. 135

    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    CAS  PubMed  Google Scholar 

  136. 136

    de Duve, C. Singularities (Cambridge Univ. Press, 2005).

    Google Scholar 

  137. 137

    Knoll, A. H. & Bambach, R. K. Directionality in the history of life: diffusion from the left wall or repeated scaling of the right? Paleobiology 26, 1–14 (2000).

    Google Scholar 

  138. 138

    Maynard Smith, J. & Szathmáry, E. The Major Transitions in Evolution (WH Freeman, 1995).

    Google Scholar 

  139. 139

    Szathmáry, E. Toward major evolutionary transitions theory 2.0. Proc. Natl Acad. Sci. USA 112, 10104–10111 (2015).

    PubMed  Google Scholar 

  140. 140

    Calcott, B. & Sterelny, K. (eds) The Major Transitions in Evolution Revisited (MIT Press, 2011).

    Google Scholar 

  141. 141

    Morris, J. J., Kirkegaard, R., Szul, M. J., Johnson, Z. I. & Zinser, E. R. Facilitation of robust growth of Prochlorococcus colonies and dilute liquid cultures by ‘helper’ heterotrophic bacteria. Appl. Environ. Microbiol. 74, 4530–4534 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Abed, R. M. M. Interaction between cyanobacteria and aerobic heterotrophic bacteria in the degradation of hydrocarbons. Int. Biodeter. Biodegr. 64, 58–64 (2010).

    CAS  Google Scholar 

  143. 143

    Shen, H., Niu, Y., Xie, P., Tao, M. & Yang, X. Morphological and physiological changes in Microcystis aeruginosa as a result of interactions with heterotrophic bacteria. Freshwater Biol. 56, 1065–1080 (2011).

    CAS  Google Scholar 

  144. 144

    Benton, M. J. & Twitchett, R. J. How to kill (almost) all life: the end-Permian extinction event. Trends Ecol. Evol. 18, 358–365 (2003).

    Google Scholar 

  145. 145

    Song, H. et al. Anoxia/high temperature double whammy during the Permian–Triassic marine crisis and its aftermath. Sci. Rep. 4, 4132 (2014).

    PubMed  PubMed Central  Google Scholar 

  146. 146

    Kasprak, A. H. et al. Episodic photic zone euxinia in the northeastern Panthalassic Ocean during the end-Triassic extinction. Geology 43, 307–310 (2015).

    CAS  Google Scholar 

  147. 147

    Kring, D. A. The Chicxulub impact event and its environmental consequences at the Cretaceous–Tertiary boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 255, 4–21 (2007).

    Google Scholar 

  148. 148

    Vermeij, G. J. Inequality and the directionality of history. Am. Nat. 153, 243–253 (1999).

    PubMed  Google Scholar 

  149. 149

    Smil, V. Energy in Nature and Society: General Energetics of Complex Systems (MIT Press, 2008).

    Google Scholar 

  150. 150

    Stevenson, D. J. Life-sustaining planets in interstellar space? Nature 400, 32 (1999).

    CAS  PubMed  Google Scholar 

  151. 151

    Strigari, L. E., Barnabè, M., Marshall, P. J. & Blandford, R. D. Nomads of the Galaxy. Mon. Not. R. Astron. Soc. 423, 1856–1865 (2012).

    Google Scholar 

  152. 152

    Nealson, K. H., Inagaki, F. & Takai, K. Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLiMEs): do they exist and why should we care? Trends Microbiol. 13, 405–410 (2005).

    CAS  PubMed  Google Scholar 

  153. 153

    Watson, A. J. Implications of an anthropic model of evolution for emergence of complex life and intelligence. Astrobiology 8, 175–185 (2008).

    CAS  PubMed  Google Scholar 

  154. 154

    Miller, B. G. & Wolfenden, R. Catalytic proficiency: the unusual case of OMP decarboxylase. Annu. Rev. Biochem. 71, 847–885 (2002).

    CAS  PubMed  Google Scholar 

  155. 155

    Kim, J., Dong, H., Seabaugh, J., Newell, S. W. & Eberl, D. D. Role of microbes in the smectite-to-illite reaction. Science 303, 830–832 (2004).

    CAS  PubMed  Google Scholar 

  156. 156

    Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503–537 (1989).

    CAS  Google Scholar 

  157. 157

    Schidlowski, M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Res. 106, 117–134 (2001).

    CAS  Google Scholar 

  158. 158

    Allen, J. F. The function of genomes in bioenergetic organelles. Phil. Trans. R. Soc. Lond. B 358, 19–38 (2003).

    CAS  Google Scholar 

  159. 159

    Fritz-Laylin, L. K. et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140, 631–642 (2010).

    CAS  PubMed  Google Scholar 

  160. 160

    Akashi, H. & Gojobori, T. Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc. Natl Acad. Sci. USA 99, 3695–3700 (2002).

    CAS  PubMed  Google Scholar 

  161. 161

    Seligmann, H. Cost-minimization of amino acid usage. J. Mol. Evol. 56, 151–161 (2003).

    CAS  PubMed  Google Scholar 

  162. 162

    Swire, J. Selection on synthesis cost affects interprotein amino acid usage in all three domains of life. J. Mol. Evol. 64, 558–571 (2007).

    CAS  PubMed  Google Scholar 

  163. 163

    Craig, C. L. & Weber, R. S. Selection costs of amino acid substitutions in ColE1 and ColIa gene clusters harbored by Escherichia coli. Mol. Biol. Evol. 15, 774–776 (1998).

    CAS  PubMed  Google Scholar 

  164. 164

    Mills, D. B. & Canfield, D. E. Oxygen and animal evolution: did a rise of atmospheric oxygen trigger the origin of animals? BioEssays 36, 1145–1155 (2014).

    CAS  PubMed  Google Scholar 

  165. 165

    Mentel, M., Röttger, M., Leys, S., Tielens, A. G. M. & Martin, W. F. Of early animals, anaerobic mitochondria, and a modern sponge. BioEssays 36, 924–932 (2014).

    PubMed  Google Scholar 

  166. 166

    Sperling, E. A. et al. Oxygen, ecology, and the Cambrian radiation of animals. Proc. Natl Acad. Sci. USA 110, 13446–13451 (2013).

    CAS  PubMed  Google Scholar 

  167. 167

    Nursall, J. R. Oxygen as a prerequisite to the origin of the Metazoa. Nature 183, 1170–1172 (1959).

    Google Scholar 

  168. 168

    Knoll, A. H. & Carroll, S. B. Early animal evolution: emerging views from comparative biology and geology. Science 284, 2129–2137 (1999).

    CAS  PubMed  Google Scholar 

  169. 169

    Chen, X. et al. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nat. Commun. 6, 7142 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. 170

    Reinhard, C. T., Planavsky, N. J., Olson, S. L., Lyons, T. W. & Erwin, D. H. Earth's oxygen cycle and the evolution of animal life. Proc. Natl Acad. Sci. USA 113, 8933–8938 (2016).

    CAS  PubMed  Google Scholar 

  171. 171

    Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields-Zhou, G. A. & Butterfield, N. J. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nat. Geosci. 7, 257–265 (2014).

    CAS  Google Scholar 

Download references

Acknowledgements

Many thanks to G. Carr, T. Carvalho, D. C. Catling, D. Haydon, T. Goldberg, P. Jarne, A. H. Knoll, E. Kroll, N. Judson, N. Lane, T. Lenormand, G. Lichfield, B. C. T. Mason, O. Morton, J. Rolff, J. Swire, and especially A. Courtiol for helpful discussions and for comments on an earlier draft of the manuscript. Many thanks to W. F. Martin and T. M. Lenton for insightful reviews that improved the manuscript. Figure 1 was drawn by graphic designer F. Zsolnai, many thanks.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Olivia P. Judson.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Judson, O. The energy expansions of evolution. Nat Ecol Evol 1, 0138 (2017). https://doi.org/10.1038/s41559-017-0138

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing