A decade of insights into grassland ecosystem responses to global environmental change


Earth's biodiversity and carbon uptake by plants, or primary productivity, are intricately interlinked, underlie many essential ecosystem processes, and depend on the interplay among environmental factors, many of which are being changed by human activities. While ecological theory generalizes across taxa and environments, most empirical tests of factors controlling diversity and productivity have been observational, single-site experiments, or meta-analyses, limiting our understanding of variation among site-level responses and tests of general mechanisms. A synthesis of results from ten years of a globally distributed, coordinated experiment, the Nutrient Network (NutNet), demonstrates that species diversity promotes ecosystem productivity and stability, and that nutrient supply and herbivory control diversity via changes in composition, including invasions of non-native species and extinction of native species. Distributed experimental networks are a powerful tool for tests and integration of multiple theories and for generating multivariate predictions about the effects of global changes on future ecosystems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The NutNet collaborative experiment tests the interactive factors and feedbacks determining grassland biodiversity and productivity.
Figure 2: The spatial and environmental range of the >100 sites participating in the NutNet project.


  1. 1

    Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. BioScience 54, 547–560 (2004).

    Article  Google Scholar 

  2. 2

    Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. 3

    Pan, S. et al. Modeling and monitoring terrestrial primary production in a changing global environment: toward a multiscale synthesis of observation and simulation. Adv. Meteorol. 2014, 965936 (2014).

    Article  Google Scholar 

  4. 4

    Franklin, J., Serra-Diaz, J. M., Syphard, A. D. & Regan, H. M. Global change and terrestrial plant community dynamics. Proc. Natl Acad. Sci. USA 113, 3725–3734 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. 5

    Zavaleta, E. S., Shaw, M. R., Chiariello, N. R., Mooney, H. A. & Field, C. B. Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity. Proc. Natl Acad. Sci. USA 100, 7650–7654 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Thornton, P. K. Livestock production: recent trends, future prospects. Phil. Trans. R. Soc. B 365, 2853–2867 (2010).

    Article  PubMed  Google Scholar 

  7. 7

    Ripple, W. J. et al. Collapse of the world's largest herbivores. Sci. Adv. 1, e1400103 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–190 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. 9

    Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. 10

    Fraser, L. H. et al. Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science 349, 302–305 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Adler, P. B. et al. Productivity is a poor predictor of plant species richness. Science 333, 1750–1753 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Clark, C. M. & Tilman, D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451, 712–715 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. 14

    Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Gruner, D. S. et al. A cross-system synthesis of consumer and nutrient resource control on producer biomass. Ecol. Lett. 11, 740–755 (2008).

    Article  PubMed  Google Scholar 

  16. 16

    Harpole, W. S. et al. Nutrient co-limitation of primary producer communities. Ecol. Lett. 14, 852–862 (2011).

    Article  PubMed  Google Scholar 

  17. 17

    Waide, R. B. et al. The relationship between productivity and species richness. Annu. Rev. Ecol. Syst. 30, 257–300 (1999).

    Article  Google Scholar 

  18. 18

    Mittelbach, G. G. et al. What is the observed relationship between species richness and productivity? Ecology 82, 2381–2396 (2001).

    Article  Google Scholar 

  19. 19

    Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).

    Article  PubMed  Google Scholar 

  20. 20

    Borer, E. T., Halpern, B. S. & Seabloom, E. W. Asymmetry in community regulation: Effects of predators and productivity. Ecology 87, 2813–2820 (2006).

    Article  PubMed  Google Scholar 

  21. 21

    Borer, E. T. et al. What determines the strength of a trophic cascade? Ecology 86, 528–537 (2005).

    Article  Google Scholar 

  22. 22

    Hillebrand, H. et al. Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proc. Natl Acad. Sci. USA 104, 10904–10909 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. 23

    Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).

    Article  Google Scholar 

  24. 24

    Leadley, P. W. et al. Progress Towards the Aichi Biodiversity Targets: An Assessment of Biodiversity Trends, Policy Scenarios and Key Actions (Secretariat of the Convention on Biological Diversity, 2014).

    Google Scholar 

  25. 25

    Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).

    Article  Google Scholar 

  26. 26

    Hector, A. et al. Biodiversity and ecosystem functioning: reconciling the results of experimental and observational studies. Funct. Ecol. 21, 998–1002 (2007).

    Article  Google Scholar 

  27. 27

    Lindenmayer, D. B. et al. Value of long-term ecological studies. Austral. Ecol. 37, 745–757 (2012).

    Article  Google Scholar 

  28. 28

    Osenberg, C. W., Sarnelle, O., Cooper, S. D. & Holt, R. D. Resolving ecological questions through meta-analysis: goals, metrics, and models. Ecology 80, 1105–1117 (1999).

    Article  Google Scholar 

  29. 29

    Koricheva, J., Gurevitch, J. & Mengersen, K. (eds) Handbook of Meta-analysis in Ecology and Evolution (Princeton Univ. Press, 2013).

    Google Scholar 

  30. 30

    Whittaker, R. J. Meta-analyses and mega-mistakes: calling time on meta-analysis of the species richness–productivity relationship. Ecology 91, 2522–2533 (2010).

    Article  PubMed  Google Scholar 

  31. 31

    Axelrod, D. I. Rise of the grassland biome, central North America. Botan. Rev. 51, 163–201 (1985).

    Article  Google Scholar 

  32. 32

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Ellis, E. C. & Ramankutty, N. Putting people in the map: anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008).

    Article  Google Scholar 

  34. 34

    The PLANTS Database (USDA, NRCS, National Plant Data Team, 2016); http://plants.usda.gov

  35. 35

    Turkington, R. Top-down and bottom-up forces in mammalian herbivore - vegetation systems: an essay review. Botany 87, 723–739 (2009).

    Article  Google Scholar 

  36. 36

    Willig, M. R. Biodiversity and productivity. Science 333, 1709–1710 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Wardle, D. A. Do experiments exploring plant diversity–ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? J. Veg. Sci. 27, 646–653 (2016).

    Article  Google Scholar 

  38. 38

    Eisenhauer, N. et al. Biodiversity–ecosystem function experiments reveal the mechanisms underlying the consequences of biodiversity change in real world ecosystems. J. Veg. Sci. (2016).

  39. 39

    Isbell, F. et al. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc. Natl Acad. Sci. USA 110, 11911–11916 (2013).

    Article  PubMed  Google Scholar 

  40. 40

    Striebel, M., Behl, S. & Stibor, H. The coupling of biodiversity and productivity in phytoplankton communities: consequences for biomass stoichiometry. Ecology 90, 2025–2031 (2009).

    Article  PubMed  Google Scholar 

  41. 41

    Cardinale, B. J., Bennett, D. M., Nelson, C. E. & Gross, K. Does productivity drive diversity or vice versa? A test of the multivariate productivity-diversity hypothesis in streams. Ecology 90, 1227–1241 (2009).

    Article  PubMed  Google Scholar 

  42. 42

    Gross, K. & Cardinale, B. J. Does species richness drive community production or vice versa? Reconciling historical and contemporary paradigms in competitive communities. Am. Nat. 170, 207–220 (2007).

    Article  PubMed  Google Scholar 

  43. 43

    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. 44

    Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Grace, J. B. et al. Does species diversity limit productivity in natural grassland communities? Ecol. Lett. 10, 680–689 (2007).

    Article  PubMed  Google Scholar 

  46. 46

    Grace, J. B., Adler, P. B., Harpole, W. S., Borer, E. T. & Seabloom, E. W. Causal networks clarify productivity-richness interrelations, bivariate plots do not. Funct. Ecol. 28, 787–798 (2014).

    Article  Google Scholar 

  47. 47

    Mittelbach, G. G. Understanding species richness–productivity relationships: the importance of meta-analyses. Ecology 91, 2540–2544 (2010).

    Article  PubMed  Google Scholar 

  48. 48

    Tredennick, A. T. et al. Comment on “Worldwide evidence of a unimodal relationship between productivity and plant species richness”. Science 351, 457 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Grace, J. B. et al. Response to comments on “Productivity is a poor predictor of plant species richness”. Science 335, 1441 (2012).

    Article  CAS  Google Scholar 

  50. 50

    Fridley, J. D. et al. The invasion paradox: reconciling pattern and process in species invasions. Ecology 88, 3–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. 51

    Sax, D. F. & Brown, J. H. The paradox of invasion. Global Ecol. Biogeogr. 9, 363–371 (2000).

    Article  Google Scholar 

  52. 52

    Seabloom, E. W. et al. Plant species’ origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nat. Commun. 6, 7710 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Flores-Moreno, H. et al. Climate modifies response of non-native and native species richness to nutrient enrichment. Phil. Trans. R. Soc. Lon. B 371, 20150273 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    MacDougall, A. S. et al. Anthropogenic-based regional-scale factors most consistently explain plot-level exotic diversity in grasslands. Global Ecol. Biogeogr. 23, 802–810 (2014).

    Article  Google Scholar 

  55. 55

    Seabloom, E. W. et al. Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness? Global Change Biol. 19, 3677–3687 (2013).

    Article  Google Scholar 

  56. 56

    Cadotte, M. W. et al. Phylogenetic patterns differ for native and exotic plant communities across a richness gradient in Northern California. Divers. Distrib. 16, 892–901 (2010).

    Article  Google Scholar 

  57. 57

    Firn, J. et al. Abundance of introduced species at home predicts abundance away in herbaceous communities. Ecol. Lett. 14, 274–281 (2011).

    Article  PubMed  Google Scholar 

  58. 58

    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article  CAS  Google Scholar 

  59. 59

    Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A. ) (IPCC, 2015).

    Google Scholar 

  60. 60

    Harpole, W. S. & Tilman, D. Grassland species loss resulting from reduced niche dimension. Nature 446, 791–793 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article  Google Scholar 

  62. 62

    Grime, J. P. Competitive exclusion in herbaceous vegetation. Nature 242, 344–347 (1973).

    Article  Google Scholar 

  63. 63

    LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).

    Article  PubMed  Google Scholar 

  64. 64

    Kaspari, M. & Powers, J. S. Biogeochemistry and geographical ecology: embracing all twenty-five elements required to build organisms. Am. Nat. 188, S62–S73 (2016).

    Article  PubMed  Google Scholar 

  65. 65

    Harpole, W. S., Goldstein, L. & Aicher, R. J. in California Grasslands Ecology and Management (eds Stromberg, M. R., Corbin, J. D. & D’Antonio, C. ) Ch. 10 119–127 (Univ. California Press, 2007).

    Google Scholar 

  66. 66

    Fay, P. A. et al. Grassland productivity limited by multiple nutrients. Nat. Plants 1, 15080 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. 67

    Lewandowska, A. M. et al. The influence of balanced and imbalanced resource supply on biodiversity–functioning relationship across ecosystems. Phil. Trans. R. Soc. B 371, 20150283 (2016).

    Article  PubMed  Google Scholar 

  68. 68

    Harpole, W. S. et al. Addition of multiple limiting resources reduces grassland diversity. Nature 537, 93–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. 69

    Prober, S. M. et al. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol. Lett. 18, 85–95 (2015).

    Article  PubMed  Google Scholar 

  70. 70

    Hautier, Y. et al. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508, 521–525 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Morgan, J. W. et al. Species origin affects the rate of response to inter-annual growing season precipitation and nutrient addition in four Australian native grasslands. J. Veg. Sci. 27, 1164–1176 (2016).

    Article  Google Scholar 

  72. 72

    Stevens, C. J. et al. Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology 96, 1459–1465 (2015).

    Article  Google Scholar 

  73. 73

    O’Halloran, L. R. et al. Regional contingencies in the relationship between aboveground biomass and litter in the world's grasslands. PLoS ONE 8, e54988 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Tilman, D. Resource Competition and Community Structure. (Princeton Univ. Press, 1982).

    Google Scholar 

  75. 75

    Tilman, D. The resource-ratio hypothesis of plant succession. Am. Nat. 125, 827–852 (1985).

    Article  Google Scholar 

  76. 76

    Huisman, J. & Weissing, F. J. Light-limited growth and competition for light in well-mixed aquatic environments - an elementary model. Ecology 75, 507–520 (1994).

    Article  Google Scholar 

  77. 77

    Borer, E. T. et al. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508, 517–520 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. 78

    La Pierre, K. J., Blumenthal, D. M., Brown, C. S., Klein, J. A. & Smith, M. D. Drivers of variation in aboveground net primary productivity and plant community composition differ across a broad precipitation gradient. Ecosystems 19, 521–533 (2016).

    Article  Google Scholar 

  79. 79

    Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl Acad. Sci. USA 112, 10967–10972 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Hunter, M. D. & Price, P. W. Playing chutes and ladders - heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73, 724–732 (1992).

    Google Scholar 

  81. 81

    Polis, G. A. & Strong, D. R. Food web complexity and community dynamics. Am. Nat. 147, 813–846 (1996).

    Article  Google Scholar 

  82. 82

    Cebrian, J. et al. Producer nutritional quality controls ecosystem trophic structure. PLoS ONE 4 e4929 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Viola, D. V. et al. Competition–defense tradeoffs and the maintenance of plant diversity. Proc. Natl Acad. Sci. USA 107, 17217–17222 (2010).

    Article  PubMed  Google Scholar 

  84. 84

    Lind, E. M. et al. Life-history constraints in grassland plant species: a growth-defence trade-off is the norm. Ecol. Lett. 16, 513–521 (2013).

    Article  PubMed  Google Scholar 

  85. 85

    Hautier, Y., Niklaus, P. A. & Hector, A. Competition for light causes plant biodiversity loss after eutrophication. Science 324, 636–638 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. 86

    Knapp, A. K. et al. Past, present, and future roles of long-term experiments in the LTER network. BioScience 62, 377–389 (2012).

    Article  Google Scholar 

  87. 87

    Dodds, W. K. et al. Surprises and insights from long-term aquatic data sets and experiments. BioScience 62, 709–721 (2012).

    Article  Google Scholar 

  88. 88

    Bonan, G. B., Hartman, M. D., Parton, W. J. & Wieder, W. R. Evaluating litter decomposition in earth system models with long-term litterbag experiments: an example using the Community Land Model version 4 (CLM4). Global Change Biol. 19, 957–974 (2013).

    Article  Google Scholar 

  89. 89

    Suddick, E. C., Whitney, P., Townsend, A. R. & Davidson, E. A. The role of nitrogen in climate change and the impacts of nitrogen–climate interactions in the United States: foreword to thematic issue. Biogeochemistry 114, 1–10 (2013).

    Article  CAS  Google Scholar 

Download references


We thank each of the researchers who have contributed data and ideas to the Nutrient Network (http://www.nutnet.org), Supplementary Table 1 lists contributing sites (2007–2016). Grants to E.T.B. and E.W.S. from the National Science Foundation (NSF-DEB-1042132, NSF-DEB-1234162), and the Institute on the Environment (DG-0001-13) supported parts of this work. J.B.G. was supported by the USGS Ecosystems and Climate and Land Use Change programmes.

Author information




E.T.B. conceived and drafted the manuscript; J.B.G., W.S.H., A.S.M. and E.W.S. contributed to writing.

Corresponding author

Correspondence to Elizabeth T. Borer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

List of Nutrient Network contributing sites. (PDF 248 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Borer, E., Grace, J., Harpole, W. et al. A decade of insights into grassland ecosystem responses to global environmental change. Nat Ecol Evol 1, 0118 (2017). https://doi.org/10.1038/s41559-017-0118

Download citation

Further reading