Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The rise and fall of malaria under land-use change in frontier regions

Abstract

Land-use change is the main force behind ecological and social change in many countries around the globe; it is primarily driven by resource needs and external economic incentives. Concomitantly, transformations of the land are the main drivers for the emergence and re-emergence of malaria. An understanding of malaria population dynamics in transforming landscapes is lacking, despite its relevance for developmental and public health policies. We develop a mathematical model that couples malaria epidemiology with the socio-economic and demographic processes that occur in a landscape undergoing land-use change. This allows us to identify different types of malaria dynamics that can arise in early stages of this transformation. In particular, we show that an increase in transmission followed by either a decline, or a further enhancement, of risk is a common outcome. This increase results from the asymmetry between the relatively fast ecological changes in transformed landscapes, and the slower pace of investment in malaria protection. These results underscore the importance of reducing ecological risk, while providing services and economic opportunities to early migrants for longer periods. Consideration of these socio-ecological processes and, more importantly, the temporal scale on which they act, is critical to avoid potential bifurcations that lead to long-lasting endemic malaria.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graphical description of the processes of land transformation and their association with malaria.
Figure 2: The typology of malaria incidence under land transformation.
Figure 3: Summary of statistical analyses of simulation outputs.
Figure 4: Relationship between cases per person at equilibrium and the values of significant parameters in determining convexity.

Similar content being viewed by others

References

  1. Patz, J. A. et al. Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence. Environ. Health Perspect. 112, 1092–1098 (2004).

    PubMed  PubMed Central  Google Scholar 

  2. Gottdenker, N. L., Streicker, D. G., Faust, C. L. & Carroll, C. R. Anthropogenic land use change and infectious diseases: a review of the evidence. Ecohealth 11, 619–632 (2014).

    PubMed  Google Scholar 

  3. Livingstone, F. Malaria and human polymorphisms. Annu. Rev. Genet. 5, 33–64 (1971).

    Google Scholar 

  4. Escalante, A. A. & Ayala, F. J. Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. Proc. Natl Acad. Sci. USA 91, 11373–11377 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bryant, D., Nielsen, D. & Tangley, L. Frontier Forests: Ecosystems and Economies on the Edge (World Resource Institute, 1997).

  6. Shriar, A. J. Agricultural intensity and its measurement in frontier regions. Agrofor. Syst. 49, 301–318 (2000).

    Google Scholar 

  7. Young, J. Along Ethiopia’s western frontier: Gambella and Benishangul in transition. J. Mod. Afr. Stud. 37, 321–346 (1999).

    Google Scholar 

  8. Lambin, E. F. & Meyfroidt, P. Land use transitions: socio-ecological feedback versus socio-economic change. Land Use Policy 27, 108–118 (2010).

    Google Scholar 

  9. Afrane, Y. A., Lawson, B. W., Githeko, A. K. & Yan, G. Effects of microclimatic changes caused by land use and land cover on duration of gonotrophic cycles of Anopheles gambiae (Diptera: Culicidae) in western Kenya highlands. J. Med. Entomol. 42, 974–980 (2005).

    PubMed  Google Scholar 

  10. Afrane, Y. A., Zhou, G., Lawson, B. W., Githeko, A. K. & Yan, G. Effects of microclimatic changes caused by deforestation on the survivorship and reproductive fitness of Anopheles gambiae in western Kenya highlands. Am. J. Trop. Med. Hyg. 74, 772–778 (2006).

    PubMed  Google Scholar 

  11. Afrane, Y. A., Githeko, A. K. & Yan, G. The ecology of Anopheles mosquitoes under climate change: case studies from the effects of deforestation in East African highlands. Ann. NY Acad. Sci. 1249, 204–210 (2012).

    PubMed  Google Scholar 

  12. Vittor, A. Y. et al. Linking deforestation to malaria in the Amazon: characterization of the breeding habitat of the principal malaria vector, Anopheles darlingi. Am. J. Trop. Med. Hyg. 81, 5–12 (2009).

    PubMed  Google Scholar 

  13. Vittor, A. Y. et al. The effect of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of falciparum malaria in the Peruvian Amazon. Am. J. Trop. Med. Hyg. 74, 3–11 (2006).

    PubMed  Google Scholar 

  14. Moreno, J. E., Rubio-Palis, Y., Páez, E., Pérez, E. & Sánchez, V. Abundance, biting behaviour and parous rate of anopheline mosquito species in relation to malaria incidence in gold-mining areas of southern Venezuela. Med. Vet. Entomol. 21, 339–349 (2007).

    CAS  PubMed  Google Scholar 

  15. Lindblade, K. A., Walker, E. D., Onapa, A. W., Katungu, J. & Wilson, M. L. Land use change alters malaria transmission parameters by modifying temperature in a highland area of Uganda. Trop. Med. Int. Health 5, 263–274 (2000).

    CAS  PubMed  Google Scholar 

  16. Olson, S. H., Gangnon, R., Silveira, G. A. & Patz, J. A. Deforestation and malaria in Mâncio Lima County, Brazil. Emerg. Infect. Dis. 16, 1108–1115 (2010).

    PubMed  PubMed Central  Google Scholar 

  17. Hahn, M. B., Gangnon, R. E., Barcellos, C., Asner, G. P. & Patz, J. A. Influence of deforestation, logging, and fire on malaria in the Brazilian Amazon. PLoS ONE 9, e85725 (2014).

    PubMed  PubMed Central  Google Scholar 

  18. de Castro, M. C., Monte-Mór, R. L., Sawyer, D. O. & Singer, B. H. Malaria risk on the Amazon frontier. Proc. Natl Acad. Sci. USA 103, 2452–2457 (2006).

    PubMed  PubMed Central  Google Scholar 

  19. Baeza, A. et al. Long-lasting transition toward sustainable elimination of desert malaria under irrigation development. Proc. Natl Acad. Sci. USA 110, 15157–15162 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Singer, B. H. & de Castro, M. C. Agricultural colonization and malaria on the Amazon frontier. Ann. NY Acad. Sci. 954, 184–222 (2001).

    CAS  PubMed  Google Scholar 

  21. Andrews, J. M., Quinby, G. E. & Langmuir, A. D. Malaria eradication in the United States. Am. J. Public Health Nations Health 40, 1405–1411 (1950).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. ter Veen, A. M. Determinants of Malaria Transmission in the United States Between 1900 and 1946 PhD thesis, Univ. London ( 2005).

    Google Scholar 

  23. Hulden, L. & Hulden, L. The decline of malaria in Finland—the impact of the vector and social variables. Malar. J. 8, 94 (2009).

    PubMed  PubMed Central  Google Scholar 

  24. Lindsay, S. W., Emerson, P. M. & Charlwood, J. D. Reducing malaria by mosquito-proofing houses. Trends Parasitol. 18, 510–514 (2002).

    PubMed  Google Scholar 

  25. Sharma, R., Gautam, A., Bhatt, R., Gupta, D. & Sharma, V. The Kheda malaria project: the case for environmental control. Health Policy Plann. 6, 262–270 (1991).

    Google Scholar 

  26. Yasuoka, J., Mangione, T. W., Spielman, A. & Levins, R. Impact of education on knowledge, agricultural practices, and community actions for mosquito control and mosquito-borne disease prevention in rice ecosystems in Sri Lanka. Am. J. Trop. Med. Hyg. 74, 1034–1042 (2006).

    PubMed  Google Scholar 

  27. Lee, K. N. Compass and Gyroscope: Integrating Science and Politics for the Environment (Island, 1993).

    Google Scholar 

  28. Utzinger, J., Tozan, Y., Doumani, F. & Singer, B. H. The economic payoffs of integrated malaria control in the Zambian copperbelt between 1930 and 1950. Trop. Med. Int. Health 7, 657–677 (2002).

    PubMed  Google Scholar 

  29. Bonds, M. H., Keenan, D. C., Rohani, P. & Sachs, J. D. Poverty trap formed by the ecology of infectious diseases. Proc. R. Soc. B 277, 1185–1192 (2010).

    PubMed  Google Scholar 

  30. Gunderson, L. H. & Holling, C. S. Panarchy: Understanding Transformations in Human and Natural Systems (Island, 2002).

    Google Scholar 

  31. Gething, P. W. et al. Climate change and the global malaria recession. Nature 465, 342–345 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tyagi, B. K. A review of the emergence of Plasmodium falciparum-dominated malaria in irrigated areas of the Thar Desert, India. Acta Trop. 89, 227–239 (2004).

    CAS  PubMed  Google Scholar 

  33. Vittor, A. Y. et al. Linking deforestation to malaria in the Amazon: characterization of the breeding habitat of the principal malaria vector, Anopheles darlingi. Am. J. Trop. Med. Hyg. 81, 5–12 (2009).

    PubMed  Google Scholar 

  34. Jaleta, K. T. et al. Agro-ecosystems impact malaria prevalence: large-scale irrigation drives vector population in western Ethiopia. Malar. J. 12, 350 (2013).

    PubMed  PubMed Central  Google Scholar 

  35. Wesolowski, A. et al. Quantifying the impact of human mobility on malaria. Science 338, 267–270 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ghebreyesus, T. A. et al. Household risk factors for malaria among children in the Ethiopian highlands. Trans. R. Soc. Trop. Med. Hyg. 94, 17–21 (2000).

    CAS  PubMed  Google Scholar 

  37. Andrews, J. M. What’s happening to malaria in the U.S.A.? Am. J. Public Health Nations Health 38, 931–942 (1948).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Barro, R. J. Government spending in a simple model of endogenous growth. J. Polit. Econ. 98, 103–125 (1990).

    Google Scholar 

  39. Tripathi, A. Total factor productivity growth in Indian agriculture. J. Global Econ. 6, 286–298 (2010).

    Google Scholar 

  40. Gajja, B. L. & Parshad, R. Labour decomposition analysis under different soil and land irrigability environments in the Kakrapar left bank canal irrigation project in Gujarat state. Ann. Arid Zone 37, 187–194 (1998).

    Google Scholar 

  41. Gallup, J. L. & Sachs, J. D. The economic burden of malaria. Am. J. Trop. Med. Hyg. 64, 85–96 (2001).

    CAS  PubMed  Google Scholar 

  42. Statistical Year Book, India 2016 (Ministry of Statistics and Programme Implementation, 2016).

  43. Cariboni, J., Gatelli, D., Liska, R. & Saltelli, A. The role of sensitivity analysis in ecological modelling. Ecol. Modell. 203, 167–182 (2007).

    Google Scholar 

  44. Saltelli, A., Chan, K. & Scott, E. Sensitivity Analysis (Wiley, 2000).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Socio-Environmental Synthesis Center (SESYNC) (grant no. DBI-1052875) through the postdoctoral fellowship programme to A.B. and the venture working group Land Use & Infectious Diseases jointly with the National Center for Ecological Synthesis (NCEAS) to A.P.D. We especially thank M. Bonds, C. Ngonghala, G. De Leo, N. Gottdenker and the rest of the working group for their insightful comments during our meetings in Annapolis.

Author information

Authors and Affiliations

Authors

Contributions

A.B., M.S.-V., A.P.D. and M.P. formulated the model. A.B. and M.S.-V. conducted the numerical and statistical analyses, and all the authors contributed to the final writing of the manuscript.

Corresponding author

Correspondence to Andres Baeza.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The mathematical model used in the analysis; Supplementary Tables 1–10; Supplementary Figures 1,2; Supplementary References. (PDF 599 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baeza, A., Santos-Vega, M., Dobson, A. et al. The rise and fall of malaria under land-use change in frontier regions. Nat Ecol Evol 1, 0108 (2017). https://doi.org/10.1038/s41559-017-0108

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-017-0108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing