Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The multilayer nature of ecological networks

Abstract

Although networks provide a powerful approach to study a large variety of ecological systems, their formulation does not typically account for multiple interaction types, interactions that vary in space and time, and interconnected systems such as networks of networks. The emergent field of ‘multilayer networks’ provides a natural framework for extending analyses of ecological systems to include such multiple layers of complexity, as it specifically allows one to differentiate and model ‘intralayer’ and ‘interlayer’ connectivity. The framework provides a set of concepts and tools that can be adapted and applied to ecology, facilitating research on high-dimensional, heterogeneous systems in nature. Here, we formally define ecological multilayer networks based on a review of previous, related approaches; illustrate their application and potential with analyses of existing data; and discuss limitations, challenges, and future applications. The integration of multilayer network theory into ecology offers largely untapped potential to investigate ecological complexity and provide new theoretical and empirical insights into the architecture and dynamics of ecological systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multilayer networks in ecology.
Figure 2: Modularity maximization in a diagonally coupled multilayer network.
Figure 3: A toy example of temporal modularity maximization.
Figure 4: Network robustness to species removal in a multilayer network of plant–flower-visitors and plant–leaf-miner parasitoids.

Similar content being viewed by others

References

  1. Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant–animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jordano, P., Bascompte, J. & Olesen, J. M. Invariant properties in coevolutionary networks of plant–animal interactions. Ecol. Lett. 6, 69–81 (2003).

    Article  Google Scholar 

  3. Bascompte, J. & Jordano, P. Plant–animal mutualistic networks: The architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593 (2007).

    Article  Google Scholar 

  4. Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104, 19891–198916 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bascompte, J. Disentangling the web of life. Science 325, 416–419 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Ings, T. C. et al. Ecological networks–beyond food webs. J. Anim. Ecol. 78, 253–269 (2009).

    Article  PubMed  Google Scholar 

  7. Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).

    Article  PubMed  Google Scholar 

  8. Olesen, J. M., Stefanescu, C. & Traveset, A. Strong, long-term temporal dynamics of an ecological network. PLoS ONE 6, e26455 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Melián, C. J., Bascompte, J., Jordano, P. & Krivan, V. Diversity in a complex ecological network with two interaction types. Oikos 118, 122–130 (2009).

    Article  Google Scholar 

  10. Fontaine, C. et al. The ecological and evolutionary implications of merging different types of networks. Ecol. Lett. 14, 1170–1181 (2011). This review discusses the importance and implications of incorporating multiple interaction types into ecological networks.

    Article  PubMed  Google Scholar 

  11. Kéfi, S. et al. More than a meal: Integrating non-feeding interactions into food webs. Ecol. Lett. 15, 291–300 (2012).

    Article  PubMed  Google Scholar 

  12. Kéfi, S., Miele, V., Wieters, E. A., Navarrete, S. A. & Berlow, E. L. How structured is the entangled bank? The surprisingly simple organization of multiplex ecological networks leads to increased persistence and resilience. PLoS Biol. 14, e1002527 (2016). This study illustrates that trophic and non-trophic interactions in a ‘node-aligned’ multiplex food web are non-randomly organized and that this organization can have important consequences for the persistence of species in a community.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Blonder, B., Wey, T. W., Dornhaus, A., James, R. & Sih, A. Temporal dynamics and network analysis. Methods Ecol. Evol. 3, 958–972 (2012).

    Article  Google Scholar 

  14. Kivelä, M. et al. Multilayer networks. J. Complex Networks 2, 203–271 (2014). This review provides a detailed description of multilayer networks relevant diagnostics and models. It gives a starting point to learn about multilayer networks.

    Article  Google Scholar 

  15. Boccaletti, S. et al. The structure and dynamics of multilayer networks. Phys. Rep. 544, 1–122 (2014). This review which takes a different perspective from ref. is another starting point to learn about multilayer networks.

    Article  PubMed  PubMed Central  Google Scholar 

  16. De Domenico, M. et al. Mathematical formulation of multilayer networks. Phys. Rev. X 3, 041022 (2013).

    Google Scholar 

  17. Gilarranz, L. J., Sabatino, M., Aizen, M. & Bascompte, J. Hot spots of mutualistic networks. J. Anim. Ecol. 84, 407–413 (2014). This study illustrates that the structure of local communities in a metacommunity represented as a multilevel network is affected by the structure of the network.

    Article  PubMed  Google Scholar 

  18. Kitching, R. L. Spatial and temporal variation in food webs in water-filled treeholes. Oikos 48, 280–288 (1987).

    Article  Google Scholar 

  19. Moore, J. C & de Ruiter, P. C. Temporal and spatial heterogeneity of trophic interactions within below-ground food webs. Agric. Ecosyst. Environ. 34, 371–397 (1991).

    Article  Google Scholar 

  20. Schoenly, K. & Cohen, J. E. Temporal variation in food web structure: 16 empirical cases. Ecol. Monogr. 61, 267–298 (1991).

    Article  Google Scholar 

  21. Closs, G. P. & Lake, P. S. Spatial and temporal variation in the structure of an intermittent stream food web. Ecol. Monogr. 64, 1–21 (1994).

    Article  Google Scholar 

  22. Winemiller, K. O. in Food Webs (eds Polis, G. A. & Winemiller, K. O. ) 298–312 (Springer, 1996).

    Book  Google Scholar 

  23. Winemiller, K. O. & Jepsen, D. B. Effects of seasonality and fish movement on tropical river food webs. J. Fish Biol. 53, 267–296 (1998).

    Article  Google Scholar 

  24. Poisot, T. et al. The dissimilarity of species interaction networks. Ecol. Lett. 15, 1353–1361 (2012).

    Article  PubMed  Google Scholar 

  25. Carstensen, D. W., Sabatino, M., Trøjelsgaard, K. & Morellato, L. P. C. Beta diversity of plant–pollinator networks and the spatial turnover of pairwise interactions. PLoS ONE 9, e112903 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Trøjelsgaard, K., Jordano, P., Carstensen, D. W. & Olesen, J. M. Geographical variation in mutualistic networks: similarity, turnover and partner fidelity. Proc. R. Soc. B 282, 20142925 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Rohr, R. P., Saavedra, S. & Bascompte, J. On the structural stability of mutualistic systems. Science 345, 1253497 (2014).

    Article  PubMed  Google Scholar 

  29. Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Olff, H. et al. Parallel ecological networks in ecosystems. Philos. Trans. R. Soc. Lond. B 364, 1755–1779 (2009).

    Article  Google Scholar 

  31. Mougi, A. & Kondoh, M. Diversity of interaction types and ecological community stability. Science 337, 349–351 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Kéfi, S. et al. Network structure beyond food webs: Mapping non-trophic and trophic interactions on Chilean rocky shores. Ecology 96, 291–303 (2015).

    Article  Google Scholar 

  33. Gross, K. Positive interactions among competitors can produce species-rich communities. Ecol. Lett. 11, 929–936 (2008).

    Article  PubMed  Google Scholar 

  34. Rudolf, V. H.W. & Lafferty, K. D. Stage structure alters how complexity affects stability of ecological networks. Ecol. Lett. 14, 75–79 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Pocock, M. J.O., Evans, D.M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012). This study describes an extensive empirical attempt to study a multilayer network that includes multiple interaction types and illustrates that considering multiple interaction types changes the robustness of a system to perturbations.

    Article  CAS  PubMed  Google Scholar 

  36. Pilosof, S. et al. Host–parasite network structure is associated with community-level immunogenetic diversity. Nat. Commun. 5, 5172 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Stella, M., Andreazzi, C. S., Selakovic, S., Goudarzi, A. & Antonioni, A. Parasite spreading in spatial ecological multiplex networks. J. Complex Networks http://dx.doi.org/10.1093/comnet/cnw028(2016).

  39. Pilosof, S., Greenbaum, G., Krasnov, B. R. & Zelnik, Y. R. Asymmetric disease dynamics in multi-host interconnected networks. Preprint at https://arxiv.org/abs/1512.09178 (2016).

  40. Nakano, S. & Murakami, M. Reciprocal subsidies: Dynamic interdependence between terrestrial and aquatic food webs. Proc. Natl Acad. Sci. USA 98, 166–170 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Knight, T. M., McCoy, M. W., Chase, J. M., McCoy, K. A. & Holt, R. D. Trophic cascades across ecosystems. Nature 437, 880–883 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. O’Neill, R. V. A Hierarchical Concept of Ecosystems (Princeton Univ. Press, 1986).

    Google Scholar 

  43. Brose, U. Body-mass constraints on foraging behaviour determine population and food-web dynamics. Funct. Ecol. 24, 28–34 (2010).

    Article  Google Scholar 

  44. Scotti, M., Ciocchetta, F. & Jordán, F. Social and landscape effects on food webs: A multi-level network simulation model. J. Complex Networks 1, 160–182 (2013).

    Article  Google Scholar 

  45. Porter, M. A., Onnela, J.-P. & Mucha, P. J. Communities in networks. Not. Am. Math. Soc. 56, 1082–1097, 1164–1166 (2009).

    Google Scholar 

  46. Fortunato, S. & Hric, D. Community detection in networks: A user guide. Phys. Rep. 659, 1–44 (2016).

    Article  Google Scholar 

  47. Mucha, P. J, Richardson, T., Macon, K., Porter, M. A. & Onnela, J.-P. Community structure in time-dependent, multiscale, and multiplex networks. Science 328, 876–878 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Bazzi, M. et al. Community detection in temporal multilayer networks, with an application to correlation networks. Multiscale Model. Simul. 14, 1–41 (2016).

    Article  Google Scholar 

  49. Bassett, D. S. et al. Dynamic reconfiguration of human brain networks during learning. Proc. Natl Acad. Sci. USA 118, 7641–7646 (2011).

    Article  Google Scholar 

  50. Sarzynska, M., Leicht, E. A., Chowell, G. & Porter, M. A. Null models for community detection in spatially embedded, temporal networks. J. Complex Networks 4, 363–406 (2016).

    Article  Google Scholar 

  51. Dupont, Y. L. & Olesen, J. M. Stability of modular structure in temporal cumulative plant–flower-visitor networks. Ecol. Complex. 11, 84–90 (2012).

    Article  Google Scholar 

  52. Krasnov, B. R., Matthee, S., Lareschi, M., Korallo-Vinarskaya, N. P. & Vinarski, M. V. Co-occurrence of ectoparasites on rodent hosts: Null model analyses of data from three continents. Oikos 119, 120–128 (2010).

    Article  Google Scholar 

  53. Pilosof, S., Fortuna, M. A., Vinarski, M. V., Korallo-Vinarskaya, N. P. & Krasnov, B. R. Temporal dynamics of direct reciprocal and indirect effects in a host–parasite network. J. Anim. Ecol. 82, 987–996 (2013).

    Article  PubMed  Google Scholar 

  54. Fortuna, M. A. et al. Nestedness versus modularity in ecological networks: Two sides of the same coin?. J. Anim. Ecol. 79, 811–817 (2010).

    PubMed  Google Scholar 

  55. Holme, P. Modern temporal network theory: A colloquium. Eur. Phys. J. B 88, 1–30 (2015).

    Article  CAS  Google Scholar 

  56. De Domenico, M., Nicosia, V., Arenas, A. & Latora, V. Structural reducibility of multilayer networks. Nat. Commun. 6, 6864 (2015).

    Article  PubMed  Google Scholar 

  57. Thébault, E. Identifying compartments in presence–absence matrices and bipartite networks: Insights into modularity measures. J. Biogeogr. 40, 759–768 (2013).

    Article  Google Scholar 

  58. Genrich, C. M., Mello, M. A. R., Silveira, F. A. O., Bronstein, J. L. & Paglia, A. P. Duality of interaction outcomes in a plant–frugivore multilayer network. Oikos 126, 361–368 (2016).

    Article  Google Scholar 

  59. Bassett, D. S. et al. Robust detection of dynamic community structure in networks. Chaos 23, 013142 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Martín González, A. M., Dalsgaard, B. & Olesen, J. M. Centrality measures and the importance of generalist species in pollination networks. Ecol. Complex. 7, 36–43 (2010).

    Article  Google Scholar 

  61. Newman, M. E. J. Networks: An Introduction (Oxford Univ. Press, 2010).

    Book  Google Scholar 

  62. Ulrich, W. & Gotelli, N. J. Null model analysis of species associations using abundance data. Ecology 91, 3384–3397 (2010).

    Article  PubMed  Google Scholar 

  63. Dormann, C. F., Fründ, J., Blüthgen, N. & Gruber, B. Indices, graphs and null models: Analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).

    Article  Google Scholar 

  64. Flores, C. O., Poisot, T., Valverde, S. & Weitz, J. S. BiMat: A MATLAB package to facilitate the analysis of bipartite networks. Methods Ecol. Evol. 7, 127–132 (2016).

    Article  Google Scholar 

  65. Lurgi, M., Montoya, D. & Montoya, J. M. The effects of space and diversity of interaction types on the stability of complex ecological networks. Theor. Ecol. 9, 3–13 (2016).

    Article  Google Scholar 

  66. Craft, M. E. & Caillaud, D. Network models: An underutilized tool in wildlife epidemiology?. Interdiscip. Persp. Infect. Dis. 2011, 676949 (2011).

    Google Scholar 

  67. Lafferty, K. D. et al. Parasites in food webs: The ultimate missing links. Ecol. Lett. 11, 533–546 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dunne, J. et al. Parasites affect food web structure primarily through increased diversity and complexity. PLoS Biol. 11, e1001579 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Selakovic, S., de Ruiter, P. C. & Heesterbeek, H. Infectious disease agents mediate interaction in food webs and ecosystems. Proc. R. Soc. B 281, 20132709 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Salehi, M. et al. Spreading processes in multilayer networks. IEEE Trans. Network Sci. Eng. . 2, 65–83 (2015).

    Google Scholar 

  71. Jordán, F. Keystone species and food webs. Philos. Trans. R. Soc. Lond. B 364, 1733–1741 (2009).

    Article  Google Scholar 

  72. Baggio, J. A. et al. Multiplex social ecological network analysis reveals how social changes affect community robustness more than resource depletion. Proc. Natl Acad. Sci. USA 113, 13708–13713 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Miele, V., Picard, F. & Dray, S. Spatially constrained clustering of ecological networks. Methods Ecol. Evol. 5, 771–779 (2014).

    Article  Google Scholar 

  74. Wang, Z., Andrews, M. A., Wu, Z. X., Wang, L. & Bauch. C. T. Coupled disease–behavior dynamics on complex networks: A review. Phys. Life Rev. 15, 1–29 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Miele, V. & Matias, C. Revealing the hidden structure of dynamic ecological networks. Preprint at https://arxiv.org/abs/1701.01355 (2017).

  76. Saavedra, S., Reed-Tsochas, F. & Uzzi, B. A simple model of bipartite cooperation for ecological and organizational networks. Nature 457, 463–466 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.P. was supported by a James S. McDonnell foundation postdoctoral fellowship for the study of complex systems and by a Fulbright postdoctoral fellowship from the US Department of State. M.A.P. was supported by the FET-Proactive project PLEXMATH (FP7-ICT-2011-8; grant no. 317614) funded by the European Commission. We thank L. G. S. Jeub for help with the analysis of multilayer modularity, M. De Domenico for insightful discussions on multilayer networks, K. Lafferty for insightful discussions on the ecology of multilayer networks, and B. R. Krasnov for help with the temporal network data. M.A.P. thanks M. Kivelä and other collaborators for helping to shape his view of multilayer networks and the participants at the first GCEE workshop on Resilience and Recovery of Biological Networks to Environmental Fluctuations for illuminating discussions.

Author information

Authors and Affiliations

Authors

Contributions

S.P. conceived the idea, performed numerical simulations, and analysed the data; M.A.P. contributed insights about the mathematics of multilayer networks and data analysis; M.P. and S.K. contributed insights on the use of multilayer networks in ecology and the interpretation of results; S.P., M.A.P., M.P., and S.K. wrote the manuscript.

Corresponding author

Correspondence to Shai Pilosof.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1-6; Supplementary Tables 1–6; Supplementary Notes 1–4; Supplementary References (PDF 1670 kb)

Supplementary Data 1

Raw data for the example temporal network in the Supplementary Information (XLSX 1628 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilosof, S., Porter, M., Pascual, M. et al. The multilayer nature of ecological networks. Nat Ecol Evol 1, 0101 (2017). https://doi.org/10.1038/s41559-017-0101

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-017-0101

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing