Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa


The rapidly growing human population in sub-Saharan Africa generates increasing demand for agricultural land and forest products, which presumably leads to deforestation. Conversely, a greening of African drylands has been reported, but this has been difficult to associate with changes in woody vegetation. There is thus an incomplete understanding of how woody vegetation responds to socio-economic and environmental change. Here we used a passive microwave Earth observation data set to document two different trends in land area with woody cover for 1992–2011: 36% of the land area (6,870,000 km2) had an increase in woody cover largely in drylands, and 11% had a decrease (2,150,000 km2), mostly in humid zones. Increases in woody cover were associated with low population growth, and were driven by increases in CO2 in the humid zones and by increases in precipitation in drylands, whereas decreases in woody cover were associated with high population growth. The spatially distinct pattern of these opposing trends reflects, first, the natural response of vegetation to precipitation and atmospheric CO2, and second, deforestation in humid areas, minor in size but important for ecosystem services, such as biodiversity and carbon stocks. This nuanced picture of changes in woody cover challenges widely held views of a general and ongoing reduction of the woody vegetation in Africa.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Changes in woody vegetation and human population over two decades.
Figure 2: Changes in woody cover (VOD) in different humidity zones.
Figure 3: Climatic drivers of changes in woody cover and biomass in sub-Saharan Africa.
Figure 4: Links between changes in woody cover and human population.


  1. 1

    Gerland, P. et al. World population stabilization unlikely this century. Science 346, 234–237 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108, 3465–3472 (2011).

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Mayaux, P. et al. State and evolution of the African rainforests between 1990 and 2010. Phil. Trans. R. Soc. Lond. B 368, 20120300 (2013).

    Article  Google Scholar 

  5. 5

    Zhou, L. et al. Widespread decline of Congo rainforest greenness in the past decade. Nature 509, 86–90 (2014).

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Fensholt, R. et al. Greenness in semi-arid areas across the globe 1981–2007 — an Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 121, 144–158 (2012).

    Article  Google Scholar 

  7. 7

    Andela, N., Liu, Y. Y., van Dijk, A. I. J. M., de Jeu, R. A. M. & McVicar, T. R. Global changes in dryland vegetation dynamics (1988–2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data. Biogeosciences 10, 6657–6676 (2013).

    Article  Google Scholar 

  8. 8

    Kaptué, A. T., Prihodko, L. & Hanan, N. P. On regreening and degradation in Sahelian watersheds. Proc. Natl Acad. Sci. USA 112, 12133–12138 (2015).

    Article  PubMed  Google Scholar 

  9. 9

    Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).

    Article  PubMed  Google Scholar 

  10. 10

    Brandt, M. et al. Woody plant cover estimation in drylands from Earth Observation based seasonal metrics. Remote Sens. Environ. 172, 28–38 (2016).

    Article  Google Scholar 

  11. 11

    Donohue, R. J., McVicar, T. R. & Roderick, M. L. Climate-related trends in Australian vegetation cover as inferred from satellite observations, 1981–2006. Glob. Change Biol. 15, 1025–1039 (2009).

    Article  Google Scholar 

  12. 12

    Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    CAS  Article  Google Scholar 

  13. 13

    Kolby Smith, W. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2015).

    Article  Google Scholar 

  14. 14

    Shimada, M. et al. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 155, 13–31 (2014).

    Article  Google Scholar 

  15. 15

    Tian, F., Brandt, M., Liu, Y. Y., Rasmussen, K. & Fensholt, R. Mapping gains and losses in woody vegetation across global tropical drylands. Glob. Change Biol. (2016).

  16. 16

    van Marle, M. J. E., van der Werf, G. R., de Jeu, R. A. M. & Liu, Y. Y. Annual South American forest loss estimates based on passive microwave remote sensing (1990–2010). Biogeosciences 13, 609–624 (2016).

    Article  Google Scholar 

  17. 17

    Jones, M. O., Kimball, J. S. & Jones, L. A. Satellite microwave detection of boreal forest recovery from the extreme 2004 wildfires in Alaska and Canada. Glob. Change Biol. 19, 3111–3122 (2013).

    Article  Google Scholar 

  18. 18

    Brandt, M. et al. Ground- and satellite-based evidence of the biophysical mechanisms behind the greening Sahel. Glob. Change Biol. 21, 1610–1620 (2015).

    Article  Google Scholar 

  19. 19

    Wigley, B. J., Bond, W. J. & Hoffman, M. T. Thicket expansion in a South African savanna under divergent land use: local vs. global drivers? Glob. Change Biol. 16, 964–976 (2010).

    Google Scholar 

  20. 20

    Mitchard, E. T. A. & Flintrop, C. M. Woody encroachment and forest degradation in sub-Saharan Africa’s woodlands and savannas 1982–2006. Phil. Trans. R. Soc. Lond. B 368, 20120406 (2013).

    Article  Google Scholar 

  21. 21

    Metzger, M. J. et al. A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. Glob. Ecol. Biogeogr. 22, 630–638 (2013).

    Article  Google Scholar 

  22. 22

    Gherardi, L. A. & Sala, O. E. Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proc. Natl Acad. Sci. USA 112, 12735–12740 (2015).

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Smith, B. et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11, 2027–2054 (2014).

    Article  Google Scholar 

  24. 24

    Yang, Y., Donohue, R. J., McVicar, T. R., Roderick, M. L. & Beck, H. E. Long-term CO2 fertilization increases vegetation productivity and has little effect on hydrological partitioning in tropical rainforests. J. Geophys. Res. Biogeosci. 2016, JG003475 (2016).

    Google Scholar 

  25. 25

    Bond, W. J. & Midgley, G. F. Carbon dioxide and the uneasy interactions of trees and savannah grasses. Phil. Trans. R. Soc. Lond. B 367, 601–612 (2012).

    CAS  Article  Google Scholar 

  26. 26

    Lambin, E. F & Geist, H. J. Land-Use and Land-Cover Change: Local Processes and Global Impacts (Springer Science & Business Media, 2008).

    Google Scholar 

  27. 27

    Cincotta, R. P., Wisnewski, J. & Engelman, R. Human population in the biodiversity hotspots. Nature 404, 990–992 (2000).

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Willig, M. R. Biodiversity and productivity. Science 333, 1709–1710 (2011).

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Charney, J. G., Stone, P. H. & Quirk, W. J. Drought in the Sahara: a biogeophysical feedback mechanism. Science 187, 434–435 (1975).

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Taylor, C. M., Lambin, E. F., Stephenne, N., Harding, R. J. & Essery, R. L. H. The influence of land use change on climate in the Sahel. J. Clim. 15, 3615–3629 (2002).

    Article  Google Scholar 

  31. 31

    Wu, M. et al. Vegetation–climate feedbacks modulate rainfall patterns in Africa under future climate change. Earth Syst. Dyn. 7, 627–647 (2016).

    Article  Google Scholar 

  32. 32

    Abiodun, B. J., Adeyewa, Z. D., Oguntunde, P. G., Salami, A. T. & Ajayi, V. O. Modeling the impacts of reforestation on future climate in West Africa. Theor. Appl. Climatol. 110, 77–96 (2012).

    Article  Google Scholar 

  33. 33

    Owe, M., de Jeu, R. & Holmes, T. Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res. 113, F01002 (2008).

    Article  Google Scholar 

  34. 34

    Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Change 5, 470–474 (2015).

    Article  Google Scholar 

  35. 35

    Liu, Y. Y. et al. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ. 123, 280–297 (2012).

    Article  Google Scholar 

  36. 36

    Tian, F. et al. Remote sensing of vegetation dynamics in drylands: evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel. Remote Sens. Environ. 177, 265–276 (2016).

    Article  Google Scholar 

  37. 37

    Guglielmetti, M. et al. Measured microwave radiative transfer properties of a deciduous forest canopy. Remote Sens. Environ. 109, 523–532 (2007).

    Article  Google Scholar 

  38. 38

    Kobayashi, T., Tsend-Ayush, J. & Tateishi, R. A new tree cover percentage map in Eurasia at 500 m resolution using MODIS data. Remote Sens. 6, 209–232 (2013).

    Article  Google Scholar 

  39. 39

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article  Google Scholar 

  40. 40

    Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).

    CAS  Article  PubMed  Google Scholar 

  41. 41

    Dinku, T., Connor, S. J., Ceccato, P. & Ropelewski, C. F. Comparison of global gridded precipitation products over a mountainous region of Africa. Int. J. Climatol. 28, 1627–1638 (2008).

    Article  Google Scholar 

  42. 42

    CIESIN, Columbia University, UN FAO & CIAT. Gridded Population of the World, Version 3 (GPWv3): Population Count Grid (SEDAC, accessed 30 October 2015);

  43. 43

    Kissling, W. D. & Carl, G. Spatial autocorrelation and the selection of simultaneous autoregressive models. Glob. Ecol. Biogeogr. 17, 59–71 (2008).

    Article  Google Scholar 

  44. 44

    Andela, N. & van der Werf, G. R. Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition. Nat. Clim. Change 4, 791–795 (2014).

    Article  Google Scholar 

  45. 45

    Jones, M. O., Kimball, J. S. & Nemani, R. R. Asynchronous Amazon forest canopy phenology indicates adaptation to both water and light availability. Environ. Res. Lett. 9, 124021 (2014).

    Article  Google Scholar 

  46. 46

    Lamarque, J.-F. et al. Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes. Atmos. Chem. Phys. 13, 7997–8018 (2013).

    Article  Google Scholar 

  47. 47

    Etheridge, D. M. et al. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res. Atmos. 101, 4115–4128 (1996).

    CAS  Article  Google Scholar 

  48. 48

    Keeling, C. D., Whorf, T. P., Wahlen, M. & van der Plichtt, J. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666–670 (1995).

    CAS  Article  Google Scholar 

Download references


M.B. received funding from the European Union’s Horizon 2020 Research and Innovation programme under Marie Sklodowska-Curie grant agreement no. 656564. We thank Y. Y. Liu for providing the VOD data. A.V. and J.P. acknowledge support from the European Research Council Synergy grant ERC-2013-SYG-610028, IMBALANCE-P. R.F. acknowledges funding from the Danish Council for Independent Research (DFF) grant ID: DFF – 6111-00258.

Author information




M.B., R.F., F.T. and A.V. designed the study. M.B. (VOD) and G.S. (ecosystem model) conducted the analyses with support by F.T., J.P., R.F. and J.B.R.P. The paper was drafted by K.R. and M.B. with contributions by all authors.

Corresponding author

Correspondence to Martin Brandt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–6, Supplementary Table 1, Supplementary References. (PDF 2408 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brandt, M., Rasmussen, K., Peñuelas, J. et al. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nat Ecol Evol 1, 0081 (2017).

Download citation

Further reading


Quick links