Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rapid and direct recoveries of predators and prey through synchronized ecosystem management


One of the twenty-first century’s greatest environmental challenges is to recover and restore species, habitats and ecosystems. The decision about how to initiate restoration is best-informed by an understanding of the linkages between ecosystem components and, given these linkages, an appreciation of the consequences of choosing to recover one ecosystem component before another. However, it remains difficult to predict how the sequence of species’ recoveries within food webs influences the speed and trajectory of restoration, and what that means for human well-being. Here, we develop theory to consider the ecological and social implications of synchronous versus sequential (species-by-species) recovery in the context of exploited food webs. A dynamical systems model demonstrates that synchronous recovery of predators and prey is almost always more efficient than sequential recovery. Compared with sequential recovery, synchronous recovery can be twice as fast and produce transient fluctuations of much lower amplitude. A predator-first strategy is particularly slow because it counterproductively suppresses prey recovery. An analysis of real-world predator–prey recoveries shows that synchronous and sequential recoveries are similarly common, suggesting that current practices are not ideal. We highlight policy tools that can facilitate swift and steady recovery of ecosystem structure, function and associated services.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Example time series illustrating that ecological communities can follow a predictable sequence of recovery to achieve trophic upgrades, following declines in predator and prey populations (trophic downgrades).
Figure 2: Time series panels showing predator and prey densities during community disassembly and recovery.
Figure 3: Community return time and volatility for three recovery scenarios.


  1. 1

    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Corlett, R. T. Restoration, reintroduction, and rewilding in a changing world. Trends Ecol. Evol. 31, 453–462 (2016).

    Article  Google Scholar 

  4. 4

    Neeson, T. M. et al. Enhancing ecosystem restoration efficiency through spatial and temporal coordination. Proc. Natl Acad. Sci. USA 112, 6236–6241 (2015).

    CAS  Article  Google Scholar 

  5. 5

    Wolkovich, E. M., Cook, B. I., McLauchlan, K. K. & Davies, T. J. Temporal ecology in the Anthropocene. Ecol. Lett. 17, 1365–1379 (2014).

    CAS  Article  Google Scholar 

  6. 6

    Suding, K. et al. Committing to ecological restoration. Science 348, 638–640 (2015).

    CAS  Article  Google Scholar 

  7. 7

    Costello, C. et al. Global fishery prospects under contrasting management regimes. Proc. Natl Acad. Sci. USA 113, 5125–5129 (2016).

    CAS  Article  Google Scholar 

  8. 8

    Jones, H. P. & Schmitz, O. J. Rapid recovery of damaged ecosystems. PLoS ONE 4, e5653 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9

    Palmer, M. A. & Ruhl, J. Aligning restoration science and the law to sustain ecological infrastructure for the future. Front. Ecol. Environ. 13, 512–519 (2015).

    Article  Google Scholar 

  10. 10

    Perring, M. P. et al. Advances in restoration ecology: rising to the challenges of the coming decades. Ecosphere 6, art131 (2015).

    Article  Google Scholar 

  11. 11

    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    CAS  Article  Google Scholar 

  12. 12

    Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres F. Jr Fishing down marine food webs. Science 279, 860–863 (1998).

    CAS  Article  Google Scholar 

  13. 13

    Sethi, S. A., Branch, T. A. & Watson, R. Global fishery development patterns are driven by profit but not trophic level. Proc. Natl Acad. Sci. USA 107, 12163–12167 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).

    Article  Google Scholar 

  15. 15

    Suding, K. N. Toward an era of restoration in ecology: successes, failures, and opportunities ahead. Annu. Rev. Ecol. Evol. Syst. 42, 465–487 (2011).

    Article  Google Scholar 

  16. 16

    Wilen, J. & Brown, G. Jr Optimal recovery paths for perturbations of trophic level bioeconomic systems. J. Environ. Econ. Manag. 13, 225–234 (1986).

    Article  Google Scholar 

  17. 17

    Andersen, K. H. & Rice, J. C. Direct and indirect community effects of rebuilding plans. ICES J. Mar. Sci. 67, 1980–1988 (2010).

    Article  Google Scholar 

  18. 18

    Frank, K. T., Petrie, B., Fisher, J. A. D. & Leggett, W. C. Transient dynamics of an altered large marine ecosystem. Nature 477, 86–89 (2011).

    CAS  Article  Google Scholar 

  19. 19

    Brown, C. J., Abdullah, S. & Mumby, P. J. Minimizing the short-term impacts of marine reserves on fisheries while meeting long-term goals for recovery. Conserv. Lett. 8, 180–189 (2015).

    Article  Google Scholar 

  20. 20

    Sinclair, A. R. E. et al. Predicting effects of predation on conservation of endangered prey. Conserv. Biol. 12, 564–575 (1998).

    Article  Google Scholar 

  21. 21

    Holt, R. D., Lawton, J. H., Polis, G. A. & Martinez, N. D. Trophic rank and the species–area relationship. Ecology 80, 1495–1504 (1999).

    Article  Google Scholar 

  22. 22

    Harvey, C. J., Gross, K., Simon, V. H. & Hastie, J. Trophic and fishery interactions between Pacific hake and rockfish: effect on rockfish population rebuilding times. Mar. Ecol. Prog. Ser. 365, 165–176 (2008).

    Article  Google Scholar 

  23. 23

    McCallum, H. Population Parameters: Estimation for Ecological Models (John Wiley & Sons, 2008).

    Google Scholar 

  24. 24

    Neubauer, P., Jensen, O. P., Hutchings, J. A. & Baum, J. K. Resilience and recovery of overexploited marine populations. Science 340, 347–349 (2013).

    CAS  Article  Google Scholar 

  25. 25

    Kellner, J. B., Sanchirico, J. N., Hastings, A. & Mumby, P. J. Optimizing for multiple species and multiple values: tradeoffs inherent in ecosystem-based fisheries management. Conserv. Lett. 4, 21–30 (2010).

    Article  Google Scholar 

  26. 26

    Costello, C., Kinlan, B. P., Lester, S. E. & Gaines, S. D. The Economic Value of Rebuilding Fisheries (Organisation for Economic Co-operation and Development, 2012).

    Google Scholar 

  27. 27

    Oken, K. L. & Essington, T. E. Evaluating the effect of a selective piscivore fishery on rockfish recovery within marine protected areas. ICES J. Mar. Sci. J. Cons. 73, 2267–2277 (2016).

    Article  Google Scholar 

  28. 28

    Woods, P. J., Bouchard, C., Holland, D. S., Punt, A. E. & Marteinsdóttir, G. Catch-quota balancing mechanisms in the Icelandic multi-species demersal fishery: Are all species equal? Mar. Policy 55, 1–10 (2015).

    Article  Google Scholar 

  29. 29

    Magnuson-Stevens Act Provisions; National Standard Guidelines. 81 FR 71858 (NMFS, 2016).

  30. 30

    NRC Evaluating the Effectiveness of Fish Stock Rebuilding Plans in the United States (National Academies Press, 2014).

  31. 31

    Bergstrom, B. J. et al. License to kill: reforming federal wildlife control to restore biodiversity and ecosystem function. Conserv. Lett. 7, 131–142 (2014).

    Article  Google Scholar 

  32. 32

    Stier, A. C. et al. Ecosystem context and historical contingency in apex predator recoveries. Sci. Adv. 2, e1501769 (2016).

    Article  Google Scholar 

  33. 33

    Branton, M. & Richardson, J. S. Assessing the value of the umbrella-species concept for conservation planning with meta-analysis. Conserv. Biol. 25, 9–20 (2010).

    Article  Google Scholar 

  34. 34

    Svenning, J.-C. et al. Science for a wilder Anthropocene: synthesis and future directions for trophic rewilding research. Proc. Natl Acad. Sci. USA 113, 898–906 (2016).

    CAS  Article  Google Scholar 

  35. 35

    Lester, S. E. et al. Biological effects within no-take marine reserves: a global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46 (2009).

    Article  Google Scholar 

  36. 36

    White, C., Costello, C., Kendall, B. E. & Brown, C. J. The value of coordinated management of interacting ecosystem services. Ecol. Lett. 15, 509–519 (2012).

    Article  Google Scholar 

  37. 37

    Noonburg, E. G., Abrams, P. A., Losos, E. J. B. & DeAngelis, A. E. D. L. Transient dynamics limit the effectiveness of keystone predation in bringing about coexistence. Am. Nat. 165, 322–335 (2005).

    Article  Google Scholar 

  38. 38

    McMeans, B. C., McCann, K. S., Humphries, M., Rooney, N. & Fisk, A. T. Food web structure in temporally-forced ecosystems. Trends Ecol. Evol. 30, 662–672 (2015).

    Article  Google Scholar 

  39. 39

    Schrama, M., Berg, M. P. & Olff, H. Ecosystem assembly rules: the interplay of green and brown webs during salt marsh succession. Ecology 93, 2353–2364 (2012).

    Article  Google Scholar 

  40. 40

    Hastings, A. Timescales, dynamics, and ecological understanding. Ecology 91, 3471–3480 (2010).

    Article  Google Scholar 

  41. 41

    Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).

    Article  Google Scholar 

  42. 42

    Pimm, S. L. & Lawton, J. H. Number of trophic levels in ecological communities. Nature 268, 329–331 (1977).

    Article  Google Scholar 

  43. 43

    Neubert, M. G. & Caswell, H. Alternatives to resilience for measuring the responses of ecological systems to perturbations. Ecology 78, 653–665 (1997).

    Article  Google Scholar 

  44. 44

    Reynolds, J. Conservation of Exploited Species (Cambridge Univ. Press, 2001).

    Google Scholar 

  45. 45

    Kellner, J. B., Litvin, S. Y., Hastings, A., Micheli, F. & Mumby, P. J. Disentangling trophic interactions inside a Caribbean marine reserve. Ecol. Appl. 20, 1979–1992 (2010).

    Article  Google Scholar 

  46. 46

    Ricard, D., Minto, C., Jensen, O. P. & Baum, J. K. Examining the knowledge base and status of commercially exploited marine species with the RAM Legacy Stock Assessment Database. Fish Fish. 13, 380–398 (2012).

    Article  Google Scholar 

  47. 47

    R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2014).

  48. 48

    Packer, C. et al. Ecological change, group territoriality, and population dynamics in Serengeti lions. Science 307, 390–393 (2005).

    CAS  Article  Google Scholar 

  49. 49

    COSEWIC COSEWIC Assessment and Status Report on the Steller Sea Lion Eumetopias jubatus in Canada (Committee on the Status of Endangered Wildlife in Canada 2013).

  50. 50

    Cleary, J. S. Stock Assessment and Management Advice for British Columbia Pacific Herring: 2013 Status and 2014 Forecast (Department of Fisheries and Oceans Canada, 2014).

    Google Scholar 

  51. 51

    Holmengen, N., Lehre Seip. K., Boyce. M. & Stenseth, N. C. Predator–prey coupling: interaction between mink Mustela vison and muskrat Ondatra zibethicus across Canada. Oikos 118, 440–448 (2009).

    Article  Google Scholar 

  52. 52

    Frid, A. & Marliave, J. Predatory fishes affect trophic cascades and apparent competition in temperate reefs. Biol. Lett. 6, 533–536 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53

    Beaudreau, A. H. & Essington, T. E. Spatial, temporal, and ontogenetic patterns of predation on rockfishes by lingcod. Trans. Am. Fish. Soc. 136, 1438–1452 (2007).

    Article  Google Scholar 

  54. 54

    Micheli, F., Halpern, B. S., Botsford, L. W. & Warner, R. R. Trajectories and correlates of community change in no-take marine reserves. Ecol. Appl. 14, 1709–1723 (2004).

    Article  Google Scholar 

  55. 55

    Breen, P. A., Hilborn, R., Maunder, M. N. & Kim, S. W. Effects of alternative control rules on the conflict between a fishery and a threatened sea lion (Phocarctos hookeri). Can. J. Fish. Aquat. Sci. 60, 527–541 (2003).

    Article  Google Scholar 

  56. 56

    Essington, T. E. et al. Catch shares, fisheries, and ecological stewardship: a comparative analysis of resource responses to a rights-based policy instrument. Conserv. Lett. 5,186–195 (2012).

    Article  Google Scholar 

  57. 57

    Lambeck, R. J. Focal species: a multi-species umbrella for nature conservation. Conserv. Biol. 11, 849–856 (1997).

    Article  Google Scholar 

  58. 58

    Roberge, J.-M. & Angelstam, P. Usefulness of the umbrella species concept as a conservation tool. Conserv. Biol. 18, 76–85 (2004).

    Article  Google Scholar 

  59. 59

    Rodrigues, A. S., Pilgrim, J. D., Lamoreux, J. F., Hoffmann, M. & Brooks, T. M. The value of the IUCN Red List for conservation. Trends Ecol. Evol. 21, 71–76 (2006).

    Article  Google Scholar 

  60. 60

    Evans, D. M. et al. Species recovery in the United States: increasing the effectiveness of the Endangered Species Act. Iss. Ecol. 20, 1–27 (2016).

    Google Scholar 

  61. 61

    Schwartz, M. W. The performance of the endangered species act. Annu. Rev. Ecol. Evol. Syst. 39, 279–299 (2008).

    Article  Google Scholar 

  62. 62

    Magera, A. M., Flemming, J. E. M., Kaschner, K., Christensen, L. B. & Lotze, H. K. Recovery trends in marine mammal populations. PLoS ONE 8, e77908 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63

    Yodzis, P . Must top predators be culled for the sake of fisheries? Trends Ecol. Evol. 16, 78–84 (2001).

    CAS  Article  Google Scholar 

  64. 64

    Kutil, S. M. Scientific certainty thresholds in fisheries management: a response to a changing climate. Environ. Law 41, 233–275 (2011).

    Google Scholar 

  65. 65

    Cury, P. M. et al. Global seabird response to forage fish depletion—one-third for the birds. Science 334, 1703–1706 (2011).

    CAS  Article  Google Scholar 

Download references


T. Young helped to sharpen the presentation of this paper. J.F.S., A.C.S., B.S.H., and P.S.L. thank the Gordon and Betty Moore Foundation for their support of the Ocean Tipping Points project, J. Kellner for insightful comments about model dynamics, and Guujaaw for inspiration.

Author information




J.F.S., A.C.S., P.S.L. and M.N. designed the study. J.F.S., A.C.S., M.N. and S.M.H. collected and analysed all data. J.F.S., A.C.S., P.S.L., B.S.H. and M.N. jointly wrote the manuscript.

Corresponding author

Correspondence to Jameal F. Samhouri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Discussion; Supplementary Figures 1–8; Supplementary Tables 1–3 (PDF 788 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Samhouri, J., Stier, A., Hennessey, S. et al. Rapid and direct recoveries of predators and prey through synchronized ecosystem management. Nat Ecol Evol 1, 0068 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing