Human behaviour as a long-term ecological driver of non-human evolution

Subjects

Abstract

Due to our intensive subsistence and habitat-modification strategies—including broad-spectrum harvesting and predation, widespread landscape burning, settlement construction, and translocation of other species—humans have major roles as ecological actors who influence fundamental trophic interactions. Here we review how the long-term history of human–environment interaction has shaped the evolutionary biology of diverse non-human, non-domesticated species. Clear examples of anthropogenic effects on non-human morphological evolution have been documented in modern studies of substantial changes to body size or other major traits in terrestrial and aquatic vertebrates, invertebrates, and plants in response to selective human harvesting, urbanized habitats, and human-mediated translocation. Meanwhile, archaeological records of harvested marine invertebrates and terrestrial vertebrates suggest that similar processes extend considerably into prehistory, perhaps to 50,000 yr BP or earlier. These results are consistent with palaeoenvironmental and other records that demonstrate long-term human habitat modification and intensive harvesting practices. Thus, while considerable attention has been focused on recent human impacts on ‘natural’ habitats, integrated evidence from modern biology and archaeology suggests a deep history of human entanglement with our ecosystems including substantial effects on the evolutionary biology of non-human taxa. The number and magnitude of such effects will probably increase given the continued intensification of anthropogenic activities and ecosystem impacts, including climate change and direct genetic modification.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2: Selected modern examples of morphological change in response to human behaviour.
Figure 3: Evolutionary changes in bighorn sheep (Ovis canadensis) horn size in response to variable human trophy hunting pressures.
Figure 4: Selected archaeological examples of morphological change in response to human behaviour.
Figure 5: Middle stone age (MSA) to later stone age (LSA) size reductions of Cape turban shell (Turbo sarmaticus) opercula recovered from South African archaeological refuse dumps (shell middens).

References

  1. 1

    Boivin, N. L. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016).

    CAS  PubMed  Article  Google Scholar 

  2. 2

    Bliege Bird, R. Disturbance, complexity, scale: New approaches to the study of human–environment interactions. Annu. Rev. Anthropol. 44, 241–257 (2015).

    Article  Google Scholar 

  3. 3

    Castilla, J. C. Coastal marine communities: trends and perspectives from human-exclusion experiments. Trends Ecol. Evol. 14, 280–283 (1999).

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Jackson, J. B. C. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5

    Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Western, D. Human-modified ecosystems and future evolution. Proc. Natl Acad. Sci. USA 98, 5458–5465 (2001).

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Corlett, R. T. The Anthropocene concept in ecology and conservation. Trends Ecol. Evol. 30, 36–41 (2015).

    PubMed  Article  Google Scholar 

  8. 8

    Diamond, J. Evolution, consequences and future of plant and animal domestication. Nature 418, 700–707 (2002).

    CAS  PubMed  Article  Google Scholar 

  9. 9

    Larson, G. & Fuller, D. Q. The evolution of animal domestication. Annu. Rev. Ecol. Evol. Syst. 45, 115–136 (2014).

    Article  Google Scholar 

  10. 10

    Hutchings, J. A. & Fraser, D. J. The nature of fisheries- and farming-induced evolution. Mol. Ecol. 17, 294–313 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  11. 11

    Darimont, C. T. et al. Human predators outpace other agents of trait change in the wild. Proc. Natl Acad. Sci. USA 106, 952–954 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12

    Ratner, S. & Lande, R. Demographic and evolutionary responses to selective harvesting in populations with discrete generations. Ecology 82, 3093–3104 (2001).

    Article  Google Scholar 

  13. 13

    Allendorf, F. W. & Hard, J. J. Human-induced evolution caused by unnatural selection through harvest of wild animals. Proc. Natl Acad. Sci. USA 106, 9987–9994 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14

    Erlandson, J. M. & Rick, T. C. Archaeology meets marine ecology: the antiquity of maritime cultures and human impacts on marine fisheries and ecosystems. Ann. Rev. Mar. Sci. 2, 231–251 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  15. 15

    Stiner, M. C., Munro, N. D., Surovell, T. A., Tchernov, E. & Bar-Yosef, O. Paleolithic population growth pulses evidenced by small animal exploitation. Science 283, 190–194 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16

    McDonnell, M. J. & Hahs, A. K. Adaptation and adaptedness of organisms to urban environments. Annu. Rev. Ecol. Evol. Syst. 46, 261–280 (2015).

    Article  Google Scholar 

  17. 17

    Sousa, W. P. The role of disturbance in natural communities. Annu. Rev. Ecol. Syst. 15, 353–391 (1984).

    Article  Google Scholar 

  18. 18

    Darimont, C. T., Fox, C. H., Bryan, H. M. & Reimchen, T. E. The unique ecology of human predators. Science 349, 858–860 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19

    Rick, T. C. & Erlandson, J. M. Coastal exploitation. Science 325, 952–953 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20

    Dunne, J. A. et al. The roles and impacts of human hunter-gatherers in North Pacific marine food webs. Sci. Rep. 6, 21179 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21

    Parker, C. H., Keefe, E. R., Herzog, N. M., O'connell, J. F. & Hawkes, K. The pyrophilic primate hypothesis. Evol. Anthropol. 25, 54–63 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  22. 22

    Bliege Bird, R., Bird, D. W., Codding, B. F., Parker, C. H. & Jones, J. H. The ‘fire stick farming’ hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics. Proc. Natl Acad. Sci. USA 105, 14796–14801 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23

    Caldararo, N. Human ecological intervention and the role of forest fires in human ecology. Sci. Total Environ. 292, 141–165 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24

    Scherjon, F., Bakels, C., MacDonald, K. & Roebroeks, W. Burning the land. Curr. Anthropol. 56, 299–326 (2015).

    Article  Google Scholar 

  25. 25

    Foster, D. et al. The importance of land-use legacies to ecology and conservation. Bioscience 53, 77–88 (2003).

    Article  Google Scholar 

  26. 26

    Worm, B. & Paine, R. T. Humans as a hyperkeystone species. Trends Ecol. Evol. 31, 600–607 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  27. 27

    McPherron, S. P. et al. Evidence for stone-tool-assisted consumption of animal tissues before 3.39 million years ago at Dikika, Ethiopia. Nature 466, 857–860 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28

    Heinzelin, J. d. Environment and behavior of 2.5-million-year-old Bouri hominids. Science 284, 625–629 (1999).

    PubMed  Article  PubMed Central  Google Scholar 

  29. 29

    Lupo, K. D. & O'Connell, J. F. Cut and tooth mark distributions on large animal bones: Ethnoarchaeological data from the Hadza and their implications for current ideas about early human carnivory. J. Archaeol. Sci. 29, 85–109 (2002).

    Article  Google Scholar 

  30. 30

    Rabinovich, R., Gaudzinski-Windheuser, S. & Goren-Inbar, N. Systematic butchering of fallow deer (Dama) at the early middle Pleistocene Acheulian site of Gesher Benot Ya'aqov (Israel). J. Hum. Evol. 54, 134–149 (2008).

    PubMed  Article  Google Scholar 

  31. 31

    Wilkins, J., Schoville, B. J., Brown, K. S. & Chazan, M. Evidence for early hafted hunting technology. Science 338, 942–946 (2012).

    CAS  PubMed  Article  Google Scholar 

  32. 32

    Marean, C. W. et al. Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature 449, 905–908 (2007).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Cortés-Sánchez, M. et al. Earliest known use of marine resources by Neanderthals. PLoS ONE 6, e24026 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. 34

    Klein, R. G. & Bird, D. W. Shellfishing and human evolution. J. Anthropol. Archaeol. 44, 198–205 (2016).

    Article  Google Scholar 

  35. 35

    Hunt, C. O., Gilbertson, D. D. & Rushworth, G. A 50,000-year record of late Pleistocene tropical vegetation and human impact in lowland Borneo. Quat. Sci. Rev. 37, 61–80 (2012).

    Article  Google Scholar 

  36. 36

    Hope, G. Environmental change and fire in the Owen Stanley Ranges, Papua New Guinea. Quat. Sci. Rev. 28, 2261–2276 (2009).

    Article  Google Scholar 

  37. 37

    Bliege Bird, R., Tayor, N., Codding, B. F. & Bird, D. W. Niche construction and Dreaming logic: Aboriginal patch mosaic burning and varanid lizards (Varanus gouldii) in Australia. Proc. R. Soc. B 280, 20132297 (2013).

    PubMed  Article  Google Scholar 

  38. 38

    Codding, B. F., Bliege Bird, R., Kauhanen, P. G. & Bird, D. W. Conservation or co-evolution? Intermediate levels of aboriginal burning and hunting have positive effects on kangaroo populations in Western Australia. Hum. Ecol. 42, 659–669 (2014).

    Article  Google Scholar 

  39. 39

    Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of Anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).

    Article  Google Scholar 

  40. 40

    Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238 (2013).

    Article  Google Scholar 

  41. 41

    Palumbi, S. R. Humans as the world's greatest evolutionary force. Science 293, 1786–1790 (2001).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Hendry, A. P., Gotanda, K. M. & Svensson, E. I. Human influences on evolution, and the ecological and societal consequences. Philos. Trans. R. Soc. B 372, 20160028 (2016).

    Article  Google Scholar 

  43. 43

    Sarrazin, F. & Lecomte, J. Evolution in the Anthropocene. Science 351, 922–923 (2016).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Hendry, A. P., Farrugia, T. J. & Kinnison, M. T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 17, 20–29 (2008).

    PubMed  Article  Google Scholar 

  45. 45

    Bull, J. W. & Maron, M. How humans drive speciation as well as extinction. Proc. R. Soc. B 283, 20160600 (2016).

    PubMed  Article  Google Scholar 

  46. 46

    Perry, G. H. Parasites and human evolution. Evol. Anthropol. 23, 218–228 (2014).

    PubMed  Article  Google Scholar 

  47. 47

    Rogalski, M. A., Gowler, C. D., Shaw, C. L., Hufbauer, R. A. & Duffy, M. A. Human drivers of ecological and evolutionary dynamics in emerging and disappearing infectious disease systems. Philos. Trans. R. Soc. B 372, 20160043 (2016).

    Article  Google Scholar 

  48. 48

    Jones, B. A. et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl Acad. Sci. USA 110, 8399–8404 (2013).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Snir, A. et al. The origin of cultivation and proto-weeds, long before Neolithic farming. PLoS ONE 10, e0131422 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50

    Allaby, R. G. et al. Archaeogenomic insights into the adaptation of plants to the human environment: pushing plant–hominin co-evolution back to the Pliocene. J. Hum. Evol. 79, 150–157 (2015).

    PubMed  Article  Google Scholar 

  51. 51

    Druzhkova, A. S. et al. Ancient DNA analysis affirms the canid from Altai as a primitive dog. PLoS ONE 8, e57754 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52

    Meyer, R. S., DuVal, A. E. & Jensen, H. R. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol. 196, 29–48 (2012).

    PubMed  Article  Google Scholar 

  53. 53

    Clutton-Brock, J. Animals as Domesticates: A World View Through History (Michigan State Univ. Press, 2012).

    Google Scholar 

  54. 54

    Zeder, M. A. in Documenting Domestication: New Genetic and Archaeological Paradigms 171–180 (2006).

    Google Scholar 

  55. 55

    Kuparinen, A. & Merilä, J. Detecting and managing fisheries-induced evolution. Trends Ecol. Evol. 22, 652–659 (2007).

    PubMed  Article  Google Scholar 

  56. 56

    Allendorf, F. W., England, P. R., Luikart, G., Ritchie, P. A. & Ryman, N. Genetic effects of harvest on wild animal populations. Trends Ecol. Evol. 23, 327–337 (2008).

    PubMed  Article  Google Scholar 

  57. 57

    Law, R. Fisheries-induced evolution: present status and future directions. Mar. Ecol. Prog. Ser. 335, 271–277 (2007).

    Article  Google Scholar 

  58. 58

    Ricker, W. E. Changes in the average size and average age of Pacific salmon. Can. J. Fish. Aquat. Sci. 38, 1636–1656 (1981).

    Article  Google Scholar 

  59. 59

    Quinn, T. P., McGinnity, P. & Cross, T. F. Long-term declines in body size and shifts in run timing of Atlantic salmon in Ireland. J. Fish Biol. 68, 1713–1730 (2006).

    Article  Google Scholar 

  60. 60

    Hamilton, S. L. et al. Size-selective harvesting alters life histories of a temperate sex-changing fish. Ecol. Appl. 17, 2268–2280 (2007).

    PubMed  Article  Google Scholar 

  61. 61

    Kendall, N. W., Dieckmann, U., Heino, M., Punt, A. E. & Quinn, T. P. Evolution of age and length at maturation of Alaskan salmon under size-selective harvest. Evol. Appl. 7, 313–322 (2014).

    PubMed  Article  Google Scholar 

  62. 62

    Law, W. & Salick, J. Human-induced dwarfing of Himalayan snow lotus, Saussurea laniceps (Asteraceae). Proc. Natl Acad. Sci. USA 102, 10218–10220 (2005).

    CAS  PubMed  Article  Google Scholar 

  63. 63

    Jachmann, H., Berry, P. S. M. & Imae, H. Tusklessness in African elephants: a future trend. Afr. J. Ecol. 33, 230–235 (1995).

    Article  Google Scholar 

  64. 64

    Coltman, D. W. et al. Undesirable evolutionary consequences of trophy hunting. Nature 426, 655–658 (2003).

    CAS  Article  Google Scholar 

  65. 65

    Pigeon, G., Festa-Bianchet, M., Coltman, D. W. & Pelletier, F. Intense selective hunting leads to artificial evolution in horn size. Evol. Appl. 9, 521–530 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  66. 66

    Hayden, B. & Villeneuve, S. A century of feasting studies. Annu. Rev. Anthropol. 40, 433–449 (2011).

    Article  Google Scholar 

  67. 67

    Bliege Bird, R. & Smith, E. A. Signaling theory, strategic interaction, and symbolic capital. Curr. Anthropol. 46, 221–248 (2005).

    Article  Google Scholar 

  68. 68

    Bliege Bird, R. & Power, E. A. Prosocial signaling and cooperation among Martu hunters. Evol. Hum. Behav. 36, 389–397 (2015).

    Article  Google Scholar 

  69. 69

    Hawkes, K., O'Connell, J. F. & Blurton Jones, N. G. Hunting and nuclear families: Some lessons from the Hadza about men's work. Curr. Anthropol. 42, 681–709 (2001).

    Google Scholar 

  70. 70

    McGuire, K. R. & Hildebrandt, W. R. Re-thinking great basin foragers: Prestige hunting and costly signaling during the Middle Archaic Period. Am. Antiq. 70, 695–712 (2005).

    Article  Google Scholar 

  71. 71

    Marean, C. W. The origins and significance of coastal resource use in Africa and Western Eurasia. J. Hum. Evol. 77, 17–40 (2014).

    PubMed  Article  Google Scholar 

  72. 72

    Simenstad, C. A., Estes, J. A. & Kenyon, K. W. Aleuts, sea otters, and alternate stable-state communities. Science 200, 403–411 (1978).

    CAS  PubMed  Article  Google Scholar 

  73. 73

    Bird, D. W. & Bliege Bird, R. L. Contemporary shellfish gathering strategies among the Meriam of the Torres Strait Islands, Australia: Testing predictions of a central place foraging model. J. Archaeol. Sci. 24, 39–63 (1997).

    Article  Google Scholar 

  74. 74

    De Vynck, J. C. et al. Return rates from intertidal foraging from Blombos Cave to Pinnacle Point: Understanding early human economies. J. Hum. Evol. 92, 101–115 (2016).

    PubMed  Article  Google Scholar 

  75. 75

    Meehan, B. Shell Bed to Shell Midden (Australian Institute of Aboriginal Studies, 1982).

    Google Scholar 

  76. 76

    Codding, B. F., O'Connell, J. F. & Bird, D. W. Shellfishing and the colonization of Sahul: A multivariate model evaluating the dynamic effects of prey utility, transport considerations and life-history on foraging patterns and midden composition. J. Isl. Coast. Archaeol. 9, 238–252 (2014).

    Article  Google Scholar 

  77. 77

    Jerardino, A. On the origins and significance of Pleistocene coastal resource use in southern Africa with particular reference to shellfish gathering. J. Anthropol. Archaeol. 41, 213–230 (2016).

    Article  Google Scholar 

  78. 78

    Avery, G. et al. The Ysterfontein 1 Middle Stone Age rock shelter and the evolution of coastal foraging. Goodwin Ser. 10, 66–89 (2008).

    Google Scholar 

  79. 79

    Klein, R. G. & Steele, T. E. Archaeological shellfish size and later human evolution in Africa. Proc. Natl Acad. Sci. USA 110, 10910–10915 (2013).

    CAS  PubMed  Article  Google Scholar 

  80. 80

    Erlandson, J. M. et al. 10,000 years of human predation and size changes in the owl limpet (Lottia gigantea) on San Miguel Island, California. J. Archaeol. Sci. 38, 1127–1134 (2011).

    Article  Google Scholar 

  81. 81

    O'Dea, A., Shaffer, M. L., Doughty, D. R., Wake, T. A. & Rodriguez, F. A. Evidence of size-selective evolution in the fighting conch from prehistoric subsistence harvesting. Proc. R. Soc. B 281, 20140159 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  82. 82

    Smith, D. A. Garden game: shifting cultivation, indigenous hunting and wildlife ecology in Western Panama. Hum. Ecol. 33, 505–537 (2005).

    Article  Google Scholar 

  83. 83

    Herzog, N. M. et al. Fire and home range expansion: A behavioral response to burning among savanna dwelling vervet monkeys (Chlorocebus aethiops). Am. J. Phys. Anthropol. 154, 554–560 (2014).

    PubMed  Article  Google Scholar 

  84. 84

    Hulme-Beaman, A., Dobney, K., Cucchi, T. & Searle, J. B. An ecological and evolutionary framework for commensalism in anthropogenic environments. Trends Ecol. Evol. 31, 633–645 (2016).

    PubMed  Article  Google Scholar 

  85. 85

    Trant, A. J. et al. Intertidal resource use over millennia enhances forest productivity. Nat. Commun. 7, 12491 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86

    Turcotte, M., Araki, H., Karp, D., Poveda, K. & Whitehead, S. The eco-evolutionary impacts of domestication and agricultural practices on wild species. Philos. Trans. R. Soc. B 372, 20160033 (2016).

    Article  Google Scholar 

  87. 87

    Brown, C. R. & Bomberger Brown, M. Where has all the road kill gone? Curr. Biol. 23, R233–R234 (2013).

    CAS  PubMed  Article  Google Scholar 

  88. 88

    Cheptou, P.-O., Hargreaves, A. L., Bonte, D. & Jacquemyn, H. Adaptation to fragmentation: evolutionary dynamics driven by human influences. Philos. Trans. R. Soc. B 372, 20160037 (2016).

    Article  Google Scholar 

  89. 89

    Bowlin, M. S. & Wikelski, M. Pointed wings, low wingloading and calm air reduce migratory flight costs in songbirds. PLoS ONE 3, e2154 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  90. 90

    Desrochers, A. Morphological response of songbirds to 100 years of landscape change in North America. Ecology 91, 1577–1582 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91

    McKinney, M. L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).

    Article  Google Scholar 

  92. 92

    Alberti, M., Marzluff, J. & Hunt, V. Urban driven phenotypic changes: empirical observations and theoretical implications for eco-evolutionary feedback. Philos. Trans. R. Soc. B 372, 20160029 (2016).

    Article  Google Scholar 

  93. 93

    Winchell, K. M., Reynolds, R. G., Prado-Irwin, S. R., Puente-Rolón, A. R. & Revell, L. J. Phenotypic shifts in urban areas in the tropical lizard Anolis cristatellus. Evolution 70, 1009–1022 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  94. 94

    Badyaev, A. V., Young, R. L., Oh, K. P. & Addison, C. Evolution on a local scale: developmental, functional, and genetic bases of divergence in bill form and associated changes in song structure between adjacent habitats. Evolution 62, 1951–1964 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  95. 95

    Rolshausen, G., Segelbacher, G., Hobson, K. A. & Schaefer, H. M. Contemporary evolution of reproductive isolation and phenotypic divergence in sympatry along a migratory divide. Curr. Biol. 19, 2097–2101 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96

    Slabbekoorn, H. Songs of the city: noise-dependent spectral plasticity in the acoustic phenotype of urban birds. Anim. Behav. 85, 1089–1099 (2013).

    Article  Google Scholar 

  97. 97

    Giraudeau, M. et al. Song characteristics track bill morphology along a gradient of urbanization in house finches (Haemorhous mexicanus). Front. Zool. 11, 83 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  98. 98

    van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99

    Simberloff, D. et al. Impacts of biological invasions: what's what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).

    Article  Google Scholar 

  100. 100

    Wilmshurst, J. M., Anderson, A. J., Higham, T. F. G. & Worthy, T. H. Dating the late prehistoric dispersal of Polynesians to New Zealand using the commensal Pacific rat. Proc. Natl Acad. Sci. USA 105, 7676–7680 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101

    Jones, E. P., Eager, H. M., Gabriel, S. I., Jóhannesdóttir, F. & Searle, J. B. Genetic tracking of mice and other bioproxies to infer human history. Trends Genet. 29, 298–308 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. 102

    Austin, C. C. Lizards took express train to Polynesia. Nature 397, 113–114 (1999).

    CAS  Article  Google Scholar 

  103. 103

    Mooney, H. A. & Cleland, E. E. The evolutionary impact of invasive species. Proc. Natl Acad. Sci. USA 98, 5446–5451 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  104. 104

    Clavero, M. & García-Berthou, E. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20, 110 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  105. 105

    Colautti, R. I. & Lau, J. A. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol. Ecol. 24, 1999–2017 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  106. 106

    Le Gros, A. et al. Invasion history and demographic processes associated with rapid morphological changes in the Red-whiskered bulbul established on tropical islands. Mol. Ecol. 25, 5359–5376 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  107. 107

    Colautti, R. I. & Barrett, S. C. H. Rapid adaptation to climate facilitates range expansion of an invasive plant. Science 342, 364–366 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. 108

    Fillios, M., Crowther, M. S. & Letnic, M. The impact of the dingo on the thylacine in Holocene Australia. World Archaeol. 44, 118–134 (2012).

    Article  Google Scholar 

  109. 109

    Langkilde, T. Invasive fire ants alter behavior and morphology of native lizards. Ecology 90, 208–217 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  110. 110

    Phillips, B. L. & Shine, R. Adapting to an invasive species: Toxic cane toads induce morphological change in Australian snakes. Proc. Natl Acad. Sci. USA 101, 17150–17155 (2004).

    CAS  PubMed  Article  Google Scholar 

  111. 111

    Malhi, Y. et al. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proc. Natl Acad. Sci. USA 113, 838–846 (2016).

    CAS  PubMed  Article  Google Scholar 

  112. 112

    Barnosky, A. D. Assessing the causes of Late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).

    CAS  PubMed  Article  Google Scholar 

  113. 113

    Crowley, B. E. et al. Island-wide aridity did not trigger recent megafaunal extinctions in Madagascar. Ecography http://dx.doi.org/10.1111/ecog.02376 (2016).

  114. 114

    Allentoft, M. E. et al. Extinct New Zealand megafauna were not in decline before human colonization. Proc. Natl Acad. Sci. USA 111, 4922–4927 (2014).

    CAS  PubMed  Article  Google Scholar 

  115. 115

    Stuart, A. J. Late Quaternary megafaunal extinctions on the continents: a short review. Geol. J. 50, 338–363 (2015).

    Article  Google Scholar 

  116. 116

    Wroe, S. et al. Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia-New Guinea). Proc. Natl Acad. Sci. USA 110, 8777–8781 (2013).

    CAS  PubMed  Article  Google Scholar 

  117. 117

    Cooper, A. et al. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349, 602–606 (2015).

    CAS  PubMed  Article  Google Scholar 

  118. 118

    Meachen, J. A. & Samuels, J. X. Evolution in coyotes (Canis latrans) in response to the megafaunal extinctions. Proc. Natl Acad. Sci. USA 109, 4191–4196 (2012).

    CAS  PubMed  Article  Google Scholar 

  119. 119

    Meachen, J. A., Janowicz, A. C., Avery, J. E. & Sadleir, R. W. Ecological changes in coyotes (Canis latrans) in response to the Ice Age megafaunal extinctions. PLoS ONE 9, e116041 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  120. 120

    Johnson, C. N. Ecological consequences of Late Quaternary extinctions of megafauna. Proc. R. Soc. B 276, 2509–2519 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  121. 121

    Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl Acad. Sci. USA 113, 847–855 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  122. 122

    Janzen, D. H. & Martin, P. S. Neotropical anachronisms: The fruits the Gomphotheres ate. Science 215, 19–27 (1982).

    CAS  PubMed  Article  Google Scholar 

  123. 123

    Moles, A. et al. A brief history of seed size. Science 307, 576–580 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  124. 124

    Guimarães, P. R., Galetti, M. & Jordano, P. Seed dispersal anachronisms: Rethinking the fruits extinct megafauna ate. PLoS ONE 3, e1745 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  125. 125

    Pires, M. M. et al. Reconstructing past ecological networks: the reconfiguration of seed-dispersal interactions after megafaunal extinction. Oecologia 175, 1247–1256 (2014).

    PubMed  Article  Google Scholar 

  126. 126

    Jansen, P. A. et al. Thieving rodents as substitute dispersers of megafaunal seeds. Proc. Natl Acad. Sci. USA 109, 12610–12615 (2012).

    CAS  PubMed  Article  Google Scholar 

  127. 127

    Federman, S. et al. Implications of lemuriform extinctions for the Malagasy flora. Proc. Natl Acad. Sci. USA 113, 5041–5046 (2016).

    CAS  PubMed  Article  Google Scholar 

  128. 128

    Kistler, L. et al. Gourds and squashes (Cucurbita spp.) adapted to megafaunal extinction and ecological anachronism through domestication. Proc. Natl Acad. Sci. USA 112, 15107–15112 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  129. 129

    Galetti, M. et al. Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340, 1086–1090 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  130. 130

    Haldane, J. B. S. Suggestions as to quantitative measurement of rates of evolution. Evolution 3, 51–56 (1949).

    CAS  PubMed  Article  Google Scholar 

  131. 131

    Smith, M. D., Asche, F., Guttormsen, A. G. & Wiener, J. B. Genetically modified salmon and full impact assessment. Science 330, 1052–1053 (2010).

    CAS  PubMed  Article  Google Scholar 

  132. 132

    Prado, J. R. et al. Genetically engineered crops: From idea to product. Annu. Rev. Plant Biol. 65, 769–790 (2014).

    CAS  PubMed  Article  Google Scholar 

  133. 133

    Richmond, D. J., Sinding, M.-H. S. & Gilbert, M. T. P. The potential and pitfalls of de-extinction. Zool. Scr. 45, 22–36 (2016).

    Article  Google Scholar 

  134. 134

    Jump, A. S. & Peñuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020 (2005).

    Article  Google Scholar 

  135. 135

    Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    CAS  PubMed  Article  Google Scholar 

  136. 136

    Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14 (2014).

    Article  Google Scholar 

  137. 137

    Bielak, A. T. & Power, G. Changes in mean weight, sea-age composition, and catch-per-unit-effort of Atlantic salmon (Salmo salar) angled in the Godbout River, Quebec, 1859–1983 Can. J. Fish. Aquat. Sci. 43, 281–287 (1986).

    Article  Google Scholar 

  138. 138

    Roy, K., Collins, A. G., Becker, B. J., Begovic, E. & Engle, J. M. Anthropogenic impacts and historical decline in body size of rocky intertidal gastropods in southern California. Ecol. Lett. 6, 205–211 (2003).

    Article  Google Scholar 

  139. 139

    Skogland, T. Natural selection of wild reindeer life history traits by food limitation and predation. Oikos 55, 101–110 (1989).

    Article  Google Scholar 

  140. 140

    McGraw, J. B. Evidence for decline in stature of American ginseng plants from herbarium specimens. Biol. Conserv. 98, 25–32 (2001).

    Article  Google Scholar 

  141. 141

    Haugen, T. O. & Vøllestad, L. A. A century of life-history evolution in grayling. Genetica 112/113 475–491 (2001).

    Article  Google Scholar 

  142. 142

    Melville-Smith, R. & de Lestang, S. Spatial and temporal variation in the size at maturity of the western rock lobster Panulirus cygnus George. Mar. Biol. 150, 183–195 (2006).

    Article  Google Scholar 

  143. 143

    Harris, P. J. & McGovern, J. C. Changes in the life history of red porgy, Pagrus pagrus, from the southeastern United States, 1972–1994. Fish. Bull. 95, 732–747 (1997).

    Google Scholar 

  144. 144

    Mollet, F., Kraak, S. & Rijnsdorp, A. Fisheries-induced evolutionary changes in maturation reaction norms in North Sea sole Solea solea. Mar. Ecol. Prog. Ser. 351, 189–199 (2007).

    Article  Google Scholar 

  145. 145

    San Martin y Gomez, G. & Van Dyck, H. Ecotypic differentiation between urban and rural populations of the grasshopper Chorthippus brunneus relative to climate and habitat fragmentation. Oecologia 169, 125–133 (2012).

    PubMed  Article  Google Scholar 

  146. 146

    Colautti, R. I. & Barrett, S. C. H. Population divergence along lines of genetic variance and covariance in the invasive plant Lythrum salicaria in eastern North America. Evolution 65, 2514–2529 (2011).

    PubMed  Article  Google Scholar 

  147. 147

    Carroll, S. P. et al. And the beak shall inherit — evolution in response to invasion. Ecol. Lett. 8, 944–951 (2005).

    Article  Google Scholar 

  148. 148

    Ferrio, J. P., Alonso, N., Voltas, J. & Araus, J. L. Grain weight changes over time in ancient cereal crops: Potential roles of climate and genetic improvement. J. Cereal Sci. 44, 323–332 (2006).

    Article  Google Scholar 

  149. 149

    Doebley, J. The genetics of maize evolution. Annu. Rev. Genet. 38, 37–59 (2004).

    CAS  PubMed  Article  Google Scholar 

  150. 150

    Nee, M. The domestication of Cucurbita (Cucurbitaceae). Econ. Bot. 44, 56–68 (1990).

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. Pigeon, R. Klein and T. Steele for providing the data from their studies used in Figs 3 and 5; G. Pigeon and E. Loftus for providing images; and M. Aylward, C. Bergey, R. Bliege Bird, B. Codding, E. Davenport, R. Klein, and D. Schussheim for helpful comments on earlier drafts of the manuscript. This material is based on work supported by grants from the National Science Foundation (BCS-1554834 to G.H.P.; BCS-1459880 to D.W.B.) and by the National Science Foundation Graduate Research Fellowship Program (DGE1255832 to A.P.S.). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Affiliations

Authors

Contributions

A.P.S., D.W.B., and G.H.P wrote the paper. A.P.S. and G.H.P. created the figures.

Corresponding author

Correspondence to George H. Perry.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sullivan, A., Bird, D. & Perry, G. Human behaviour as a long-term ecological driver of non-human evolution. Nat Ecol Evol 1, 0065 (2017). https://doi.org/10.1038/s41559-016-0065

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing