Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cooperation facilitates the colonization of harsh environments

Abstract

Animals living in harsh environments, where temperatures are hot and rainfall is unpredictable, are more likely to breed in cooperative groups. As a result, harsh environmental conditions have been accepted as a key factor explaining the evolution of cooperation. However, this is based on evidence that has not investigated the order of evolutionary events, so the inferred causality could be incorrect. We resolved this problem using phylogenetic analyses of 4,707 bird species and found that causation was in the opposite direction to that previously assumed. Rather than harsh environments favouring cooperation, cooperative breeding has facilitated the colonization of harsh environments. Cooperative breeding was, in fact, more likely to evolve from ancestors occupying relatively cool environmental niches with predictable rainfall, which had low levels of polyandry and hence high within-group relatedness. We also found that polyandry increased after cooperative breeders invaded harsh environments, suggesting that when helpers have limited options to breed independently, polyandry no longer destabilizes cooperation. This provides an explanation for the puzzling cases of polyandrous cooperative breeding birds. More generally, this illustrates how cooperation can play a key role in invading ecological niches, a pattern observed across all levels of biological organization from cells to animal societies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Animals living in harsh environments are more likely to breed cooperatively.
Figure 2: Cooperative breeding and the association with harsh environments and low levels of polyandry.
Figure 3: Cooperation and the invasion of harsh environments.
Figure 4: The release of constraints on female polyandry in harsh environments.
Figure 5: Evolutionary transitions between cooperative breeding and environmental niches.

References

  1. 1

    Wilson, E. O. The Insect Societies (Cambridge Univ. Press, 1971).

    Google Scholar 

  2. 2

    Jetz, W. & Rubenstein, D. R. Environmental uncertainty and the global biogeography of cooperative breeding in birds. Curr. Biol. 21, 72–78 (2011).

    CAS  Article  Google Scholar 

  3. 3

    Koenig, W. D. & Dickinson, J. L. Cooperative Breeding in Vertebrates (Cambridge Univ. Press, 2016).

    Google Scholar 

  4. 4

    Rubenstein, D. R. & Lovette, I. J. Temporal environmental variability drives the evolution of cooperative breeding in birds. Curr. Biol. 17, 1414–1419 (2007).

    CAS  Article  Google Scholar 

  5. 5

    Emlen, S. T. The evolution of helping. I. An ecological constraints model. Am. Nat. 119, 29–39 (1982).

    Article  Google Scholar 

  6. 6

    Arnold, K. E. & Owens, I. P. F. Cooperative breeding in birds: the role of ecology. Behav. Ecol. 10, 465–471 (1999).

    Article  Google Scholar 

  7. 7

    Pen, I. & Weissing, F. J. Towards a unified theory of cooperative breeding: the role of ecology and life history re-examined. Proc. R. Soc. Lond. B 267, 2411–2418 (2000).

    Article  Google Scholar 

  8. 8

    Mcleod, D. V & Wild, G. The relationship between ecology and the optimal helping strategy in cooperative breeders. J. Theor. Biol. 354, 25–34 (2014).

    Article  Google Scholar 

  9. 9

    Covas, R., Du Plessis, M. A. & Doutrelant, C. Helpers in colonial cooperatively breeding sociable weavers Philetairus socius contribute to buffer the effects of adverse breeding conditions. Behav. Ecol. Sociobiol. 63, 103–112 (2008).

    Article  Google Scholar 

  10. 10

    Rubenstein, D. R. Spatiotemporal environmental variation, risk aversion, and the evolution of cooperative breeding as a bet-hedging strategy. Proc. Natl Acad. Sci. USA 108, 10816–10822 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Hatchwell, B. J. & Komdeur, J. Ecological constraints, life history traits and the evolution of cooperative breeding. Anim. Behav. 59, 1079–1086 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Pruett-Jones, S. G. & Lewis, M. J. Sex ratio and habitat limitation promote delayed dispersal in superb fairy-wrens. Nature 348, 541–542 (1990).

    Article  Google Scholar 

  13. 13

    Komdeur, J. Importance of habitat saturation and territory quality for evolution of cooperative breeding in the Seychelles warbler. Nature 358, 493–495 (1992).

    Article  Google Scholar 

  14. 14

    Bergmüller, R., Heg, D. & Taborsky, M. Helpers in a cooperatively breeding cichlid stay and pay or disperse and breed, depending on ecological constraints. Proc. R. Soc. Lond. B 272, 325–331 (2005).

    Article  Google Scholar 

  15. 15

    Dillard, J. R. & Westneat, D. F. Disentangling the Correlated Evolution of Monogamy and Cooperation. Trends Ecol. Evol. 31, 503–513 (2016).

    Article  Google Scholar 

  16. 16

    Botero, C. A. & Rubenstein, D. R. Fluctuating environments, sexual selection and the evolution of flexible mate choice in birds. PLoS One 7, e32311 (2012).

    CAS  Article  Google Scholar 

  17. 17

    Culina, A., Radersma, R. & Sheldon, B. C. Trading up: The fitness consequences of divorce in monogamous birds. Biol. Rev. 90, 1015–1034 (2015).

    Article  Google Scholar 

  18. 18

    Hamilton, W. D. The genetical evolution of social behaviour. I & II. J. Theor. Biol. 7, 1–16 (1964).

    CAS  Article  Google Scholar 

  19. 19

    Maynard-Smith, J. Group Selection and Kin Selection. Nature 201, 1145–1147 (1964).

    Article  Google Scholar 

  20. 20

    Garamszegi, L. Z. Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology (Springer, 2014).

    Google Scholar 

  21. 21

    Colwell, R. K., Ecology, S., Summer, N. L. & Colwell, R. K. Predictability, constancy, and contingency of periodic phenomena. Ecology 55, 1148–1153 (1974).

    Article  Google Scholar 

  22. 22

    Botero, C. A., Dor, R., McCain, C. M. & Safran, R. J. Environmental harshness is positively correlated with intraspecific divergence in mammals and birds. Mol. Ecol. 23, 259–268 (2014).

    Article  Google Scholar 

  23. 23

    Hughes, W. O. H., Oldroyd, B. P., Beekman, M. & Ratnieks, F. L. W. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320, 1213–1216 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Lukas, D. & Clutton-Brock, T. Cooperative breeding and monogamy in mammalian societies. Proc. R. Soc. Lond. B 279, 2151–2156 (2012).

    Article  Google Scholar 

  25. 25

    Cornwallis, C. K., West, S. A., Davis, K. E. & Griffin, A. S. Promiscuity and the evolutionary transition to complex societies. Nature 466, 969–972 (2010).

    CAS  Article  Google Scholar 

  26. 26

    Boomsma, J. J. Kin selection versus sexual selection: why the ends do not meet. Curr. Biol. 17, 673–683 (2007).

    Article  Google Scholar 

  27. 27

    Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95–108 (2004).

    CAS  Article  Google Scholar 

  28. 28

    Maynard-Smith, J. & Szathmary, E. The Major Transitions in Evolution (Oxford Univ. Press, 1995).

    Google Scholar 

  29. 29

    Bourke, A. F. G. Principles of Social Evolution (Oxford Univ. Press, 2011).

    Google Scholar 

  30. 30

    Duffy, J. E. & Macdonald, K. S. Kin structure, ecology and the evolution of social organization in shrimp: a comparative analysis. Proc. R. Soc. Lond. B 277, 575–584 (2010).

    Article  Google Scholar 

  31. 31

    Sun, S. J. et al. Climate-mediated cooperation promotes niche expansion in burying beetles. eLife 2014, 1–15 (2014).

    Google Scholar 

  32. 32

    Archibald, J. One Plus One Equals One: Symbiosis and the Evolution of Complex Life (Oxford Univ. Press, 2014).

    Google Scholar 

  33. 33

    Cockburn, A. Prevalence of different modes of parental care in birds. Proc. R. Soc. Lond. B 273, 1375–1383 (2006).

    Article  Google Scholar 

  34. 34

    Riehl, C. Evolutionary routes to non-kin cooperative breeding in birds. Proc. R. Soc. Lond. B 280, 1830–1833 (2013).

    Article  Google Scholar 

  35. 35

    Downing, P. A., Cornwallis, C. K., Griffin, A. S. & Griffin, A. S. Sex. long life and the evolutionary transition to cooperative breeding in birds. Proc. R. Soc. Lond. B 282, 1–7 (2015).

    Article  Google Scholar 

  36. 36

    Griffith, S. C., Owens, I. P. F. & Thuman, K. A. Extra pair paternity in birds: a review of interspecific variation and adaptive function. Mol. Ecol. 11, 2195–2212 (2002).

    CAS  Article  Google Scholar 

  37. 37

    Spottiswoode, C. & Møller, A. P. Extrapair paternity, migration, and breeding synchrony in birds. Behav. Ecol. 15, 41–57 (2004).

    Article  Google Scholar 

  38. 38

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article  Google Scholar 

  39. 39

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    CAS  Article  Google Scholar 

  40. 40

    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    CAS  Article  Google Scholar 

  41. 41

    R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015).

  42. 42

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Article  Google Scholar 

  43. 43

    Warnes, G. R. & Burrows, R. Warnes and Raftery’s MCGibbsit MCMC diagnostic (2013); https://cran.r-project.org/web/packages/mcgibbsit/

  44. 44

    Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: convergence diagnosis and output analysis for MCMC. R News 6, 7–11 (2006).

    Google Scholar 

  45. 45

    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–511 (1992).

    Article  Google Scholar 

  46. 46

    de Villemereuil, P., Gimenez, O. & Doligez, B. Comparing parent-offspring regression with frequentist and Bayesian animal models to estimate heritability in wild populations: a simulation study for Gaussian and binary traits. Methods Ecol. Evol. 4, 260–275 (2013).

    Article  Google Scholar 

  47. 47

    Pagel, M. & Meade, A. Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am. Nat. 167, 808–825 (2006).

    PubMed  Google Scholar 

  48. 48

    Ives, A. R. & Garland, T. J. in Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology (ed. Garamszegi, L. Z. ) 231–262 (Springer, 2014).

    Google Scholar 

  49. 49

    Hardenberg, A. von & Gonzalez-Voyer, A. Disentangling evolutionary cause-effect relationships with phylogenetic confirmatory path analysis. Evolution 67, 378–387 (2013).

    Article  Google Scholar 

  50. 50

    Orme, C. D. L. et al. CAPER: Comparative Analyses of Phylogenetics and Evolution in R. Methods Ecol. Evol. 3, 145–151 (2012).

    Article  Google Scholar 

  51. 51

    Shipley, B. Cause and Correlation in Biology: A User’s Guide to Path Analysis, Structural Equations and Causal Inference (Cambridge Univ. Press 2002).

    Google Scholar 

  52. 52

    Koenker, R. Quantile Regression in R: a Vignette (2015); https://cran.r-project.org/web/packages/quantreg/vignettes/rq.pdf

Download references

Acknowledgements

We thank the Swedish Research Council (VR), the Knut and Alice Wallenberg foundation, the Royal Society, the US National Science Foundation (IOS-1121435, IOS-1257530 and IOS-1439985) and the European Research Council for funding, and S.-F. Shen for comments.

Author information

Affiliations

Authors

Contributions

C.K.C., S.A., D.R.R. and A.S.G. conceived the study, C.K.C. analysed the data, C.A.B. and P.D. contributed materials, and all authors contributed substantially to writing the paper.

Corresponding author

Correspondence to Charlie K. Cornwallis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1, 2 (PDF 435 kb)

Supplementary Code

Supplementary R code (TXT 42 kb)

Supplementary Tables

Supplementary Tables 1–14 (XLSX 630 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cornwallis, C., Botero, C., Rubenstein, D. et al. Cooperation facilitates the colonization of harsh environments. Nat Ecol Evol 1, 0057 (2017). https://doi.org/10.1038/s41559-016-0057

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing