Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The unconstrained evolution of fast and efficient antibiotic-resistant bacterial genomes

Abstract

Evolutionary trajectories are constrained by trade-offs when mutations that benefit one life history trait incur fitness costs in other traits. As resistance to tetracycline antibiotics by increased efflux can be associated with an increase in length of the Escherichia coli chromosome of 10% or more, we sought costs of resistance associated with doxycycline. However, it was difficult to identify any because the growth rate (r), carrying capacity (K) and drug efflux rate of E. coli increased during evolutionary experiments where the species was exposed to doxycycline. Moreover, these improvements remained following drug withdrawal. We sought mechanisms for this seemingly unconstrained adaptation, particularly as these traits ought to trade-off according to rK selection theory. Using prokaryote and eukaryote microorganisms, including clinical pathogens, we show that r and K can trade-off, but need not, because of ‘rK trade-ups’. r and K trade-off only in sufficiently carbon-rich environments where growth is inefficient. We then used E. coli ribosomal RNA (rRNA) knockouts to determine specific mutations, namely changes in rRNA operon (rrn) copy number, than can simultaneously maximize r and K. The optimal genome has fewer operons, and therefore fewer functional ribosomes, than the ancestral strain. It is, therefore, unsurprising for r-adaptation in the presence of a ribosome-inhibiting antibiotic, doxycycline, to also increase population size. We found two costs for this improvement: an elongated lag phase and the loss of stress protection genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Collated rK data sets are best explained by unimodal data fits; K, r and yield data sets in fungi and bacteria are explained by equations (2)–(7).
Figure 2: Empirical and theoretic rK and r-yield relationships.
Figure 3: A demonstration that rrn operon copy number controls r and K by mediating yield: to turn K into yield, divide by 2 mg ml−1 glucose.
Figure 4: Determining the rrn operon copy number that maximizes growth rate of the E. coli rrn mutants.
Figure 5: E. coli K12(MG1655) rrn knockout strains Δ3 and Δ4 optimize population size, K, when glucose is high in concentration without paying a growth rate cost.
Figure 6: Simultaneous rK-adaptation from an antibiotic challenge where drug resistance also increased.
Figure 7: A DNA coverage plot for E. coli K12(AG100) following 60 generations (96 h) of growth in the presence and absence of doxycycline.

Similar content being viewed by others

References

  1. Herron, M. D. & Doebeli, M. Parallel evolutionary dynamics of adaptive diversification in Escherichia coli . PLoS Biol. 11, e1001490 (2013).

    Article  CAS  Google Scholar 

  2. Maharjan, R. et al. The form of a trade-off determines the response to competition. Ecol. Lett. 16, 1267–1276 (2013).

    Article  Google Scholar 

  3. Ben-Hur, E., Fragman-Sapir, O., Hadas, R., Singer, A. & Kadmon, R. Functional trade-offs increase species diversity in experimental plant communities. Ecol. Lett. 15, 1276–1282 (2012).

    Article  Google Scholar 

  4. Kraaijeveld, A. R. & Godfray, H. C. Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster . Nature 389, 278–280 (1997).

    Article  CAS  Google Scholar 

  5. Fine, P. V. A. et al. The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87, S150–S162 (2006).

    Article  Google Scholar 

  6. Dieckmann, U. & Doebeli, M. On the origin of species by sympatric speciation. Nature 400, 354–357 (1999).

    Article  CAS  Google Scholar 

  7. Calsina, A. & Cuadrado, S. Small mutation rate and evolutionary stable strategies in infinite dimentional adaptive dynamics. Math. Biol. 48, 135–159 (2004).

    Article  Google Scholar 

  8. Metz, J. A. J., Geritz, S. A. H., Meszena, G., Jacobs, F. J. A. & Van Heerwaarden, J. S. in Stochastic and Spatial Structures of Dynamical Systems (eds van Strien, S. J. & Verduyn Lunel, S. M. ) 183–231 (North Holland, 1996).

    Google Scholar 

  9. Gudelj, I., Coman, C. D. & Beardmore & R. E. Classifying the role of trade-offs in the evolutionary diversity of pathogens. Proc. R. Soc. A 426, 97–116 (2006).

    Article  Google Scholar 

  10. Meyer, J. R., Gudelj, I. & Beardmore, R. Biophysical mechanisms that maintain biodiversity through trade-offs. Nat. Commun. 6, 6278 (2015).

    Article  CAS  Google Scholar 

  11. Beardmore, R. E., Gudelj, I., Lipson, D. A. & Hurst, L. D. Metabolic trade-offs and the maintenance of the fittest and the flattest. Nature 472, 342–346 (2011).

    Article  CAS  Google Scholar 

  12. Reznick, D., Nunney, L. & Tessier, A. Big houses, big cars, superfleas and the costs of reproduction. Trends Ecol. Evol. 15, 421–425 (2000).

    Article  CAS  Google Scholar 

  13. Leiby, N. & Marx, C. J. Metabolic erosion primarily through mutation accumulation, and not tradeoffs, drives limited evolution of substrate specificity in Escherichia coli . PLoS Biol. 12, e1001789 (2014).

    Article  Google Scholar 

  14. Lipson, D. A. The complex relationship between microbial growth rate and yield and its implications for ecosystem processes. Front. Microbiol. 6, 615 (2015).

    PubMed  PubMed Central  Google Scholar 

  15. Mueller, L. D. & Ayala, F. J. Trade-off between r-selection and k-selection in Drosophila populations. Proc. Natl Acad. Sci. USA 78, 1303–1305 (1981).

    Article  CAS  Google Scholar 

  16. Sibly, R. M. & Hone, J. Population growth rate and its determinants: an overview. Phil. Trans. R. Soc. Lond. B 357, 1153–1170 (2002).

    Article  Google Scholar 

  17. Luckinbill, L. S. r and K selection in experimental populations of Escherichia coli . Science 202, 1201–1203 (1978).

    Article  CAS  Google Scholar 

  18. Luckinbill, L. S. Selection and the r/K continuum in experimental populations of protozoa.. Am. Nat. 113, 427–437 (1979).

    Article  Google Scholar 

  19. Nilsson, A. I. et al. Reducing the fitness cost of antibiotic resistance by amplification of initiator tRNA genes. Proc. Natl Acad. Sci. USA 103, 6976–6981 (2006).

    Article  CAS  Google Scholar 

  20. Millan, A. S. et al. Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids. Nat. Commun. 5, 5208 (2014).

    Article  Google Scholar 

  21. Blair, J. M. A. et al. AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity. Proc. Natl Acad. Sci. USA 112, 3511–3516 (2015).

    Article  CAS  Google Scholar 

  22. Stearns, S. The Evolution of Life Histories (Oxford Univ. Press, 1992).

    Google Scholar 

  23. Aktipis, C. A., Boddy, A. M., Gatenby, R. A., Brown, J. S. & Maley, C. C. Life history trade-offs in cancer evolution. Nat. Rev. Cancer 13, 883–892 (2013).

    Article  CAS  Google Scholar 

  24. Korolev, K. S., Xavier, J. B. & Gore, J. Turning ecology and evolution against cancer. Nat. Rev. Cancer 14, 371–380 (2014).

    Article  CAS  Google Scholar 

  25. Pfeiffer, T., Schuster, S. & Bonhoeffer, S. Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504–507 (2001).

    Article  CAS  Google Scholar 

  26. Novak, M., Pfeiffer, T., Lenski, R. E., Sauer, U. & Bonhoeffer, S. Experimental tests for an evolutionary trade-off between growth rate and yield in E. coli . Am. Nat. 168, 242–251 (2006).

    PubMed  Google Scholar 

  27. Wong, W. W., Tran, L. M. & Liao, J. C. A hidden square-root boundary between growth rate and biomass yield. Biotechnol. Bioeng. 102, 73–80 (2009).

    Article  CAS  Google Scholar 

  28. Fitzsimmons, J., Schoustra, S., Kerr, J. & Kassen, R. Population consequences of mutational events: effects of antibiotic resistance on the r/k trade-off. Evol. Ecol. 24, 227–236 (2010).

    Article  Google Scholar 

  29. Mori, M., Hwa, T., Martin, O. C., De Martino, A. & Marinari, E. Constrained allocation flux balance analysis. PLoS Comput. Biol. 12, e1004913 (2016).

    Article  Google Scholar 

  30. Stearns, S. C. The evolution of life history traits: a critique of the theory and a review of the data. Annu. Rev. Ecol. Syst. 8, 145–171 (1977).

    Article  Google Scholar 

  31. Monod, J. The growth of bacterial cultures. Annu. Rev. Microbiol. 3, 371–394 (1949).

    Article  CAS  Google Scholar 

  32. Roughgarden, J. Density-dependent natural selection. Ecology 52, 453–468 (1971).

    Article  Google Scholar 

  33. Boyce, M. S. Restitution of r- and k-selection as a model of density-dependent natural selection. Annu. Rev. Ecol. Syst. 15, 427–447 (1984).

    Article  Google Scholar 

  34. MacLean, R. C. & Gudelj, I. Resource competition and social conflict in experimental populations of yeast. Nature 441, 498–501 (2006).

    Article  CAS  Google Scholar 

  35. Koch, A. R. & Deppe, C. S. In vivo assay of protein synthesizing capacity of Escherichia coli from slowly growing chemostat cultures. J. Mol. Biol. 55, 549–562 (1971).

    Article  CAS  Google Scholar 

  36. Stevenson, B. S. & Schmidt, T. M. Growth rate-dependent accumulation of RNA from plasmid-borne rRNA operons in Escherichia coli . J. Bacteriol. 180, 1970–1972 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fuentes-Hernandez, A. et al. Using a sequential regimen to eliminate bacteria at sublethal antibiotic dosages. PLoS Biol. 13, e1002104 (2015).

    Article  Google Scholar 

  38. Chopra, I. & Roberts, M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65, 232–260 (2001).

    Article  CAS  Google Scholar 

  39. Wang, X. et al. Cryptic prophages help bacteria cope with adverse environments. Nat. Commun. 1, 147 (2010).

    Article  Google Scholar 

  40. Laehnemann, D. et al. Genomics of rapid adaptation to antibiotics: convergent evolution and scalable sequence amplification. Genome Biol. Evol. 6, 1287–1301 (2014).

    Article  CAS  Google Scholar 

  41. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible framework for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The rrn knockout strains derived from E. coli MG1655 were gifted by T. Bollenbach, strain AG100 was provided by S. Levy and Candida strains were a gift from S. Bates, who are sincerely thanked for their help.

Author information

Authors and Affiliations

Authors

Contributions

R.B., I.G., M.H. and C.R.R. proposed research questions and hypotheses, and subsequently designed the experiments; R.B., C.R.R., F.G. and M.H. designed and wrote computer codes to analyse the data; C.R.R., M.H. and S.D. performed the experiments; and R.B., C.R.R. and I.G. wrote the manuscript.

Corresponding author

Correspondence to Robert Beardmore.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1–15; Supplementary Tables 1,2 (PDF 1191 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reding-Roman, C., Hewlett, M., Duxbury, S. et al. The unconstrained evolution of fast and efficient antibiotic-resistant bacterial genomes. Nat Ecol Evol 1, 0050 (2017). https://doi.org/10.1038/s41559-016-0050

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-016-0050

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology