Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Persistent tropical foraging in the highlands of terminal Pleistocene/Holocene New Guinea

Abstract

The terminal Pleistocene/Holocene boundary (approximately 12–8 thousand years ago) represented a major ecological threshold for humans, both as a significant climate transition and due to the emergence of agriculture around this time. In the highlands of New Guinea, climatic and environmental changes across this period have been highlighted as potential drivers of one of the earliest domestication processes in the world. We present a terminal Pleistocene/Holocene palaeoenvironmental record (12–0 thousand years ago ) of carbon and oxygen isotopes in small mammal tooth enamel from the site of Kiowa. The results show that tropical highland forest and open mosaics, and the human subsistence focused on these environments, remained stable throughout the period in which agriculture emerged at nearby Kuk Swamp. This suggests the persistence of tropical forest foraging among highland New Guinea groups and highlights that agriculture in the region was not adopted as a unilinear or dramatic, forced event but was locally and historically contingent.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Location of Kiowa and Kuk Swamp in the Central Highlands of New Guinea.
Figure 2: Kiowa archaeological site.
Figure 3: Stable carbon and oxygen isotope data for all faunal samples analysed by stratigraphic level (n = 140).
Figure 4: Stable carbon and oxygen isotope data separated by taxonomic group (cuscus, ringtail possum, bat and macropod) and stratigraphic level (n = 140).

References

  1. 1

    Denham, T. P. et al. Origins of agriculture at Kuk Swamp in the highlands of New Guinea. Science 301, 189–193 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Bocquet-Appel, J. P. When the world’s population took off: the springboard of the Neolithic demographic transition. Science 333, 560–561 (2011).

    CAS  Article  Google Scholar 

  3. 3

    Larson, G. et al. Current perspectives and the future of domestication studies. Proc. Natl Acad. Sci. USA 111, 6139–6146 (2014).

    CAS  Article  Google Scholar 

  4. 4

    Fuller, D. Q. et al. The contribution of rice agriculture and livestock pastoralism to prehistoric methane levels: an archaeological assessment. Holocene 21, 743–759 (2011).

    Article  Google Scholar 

  5. 5

    Boivin, N. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016).

    CAS  Article  Google Scholar 

  6. 6

    Bar-Yosef, O. & Belfer-Cohen, A. The origins of sedentism and farming communities in the Levant. J. World Prehist. 3, 447–498 (1989).

    Article  Google Scholar 

  7. 7

    Richerson, P. J., Boyd, R. & Bettinger, R. L. Was agriculture impossible during the Pleistocene but mandatory during the Holocene? A climate change hypothesis. Am. Antiquity 66, 387–411 (2001).

    Article  Google Scholar 

  8. 8

    Summerhayes, G. R. et al. Human adaptation and plant use in Highland New Guinea 49,000 to 44,000 years ago. Science 330, 78–81 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Hunt, C. O., Gilbertson, D. D. & Rushworth, G. A 50,000-year record of late Pleistocene tropical vegetation and human impact in lowland Borneo. Quat. Sci. Rev. 37, 61–80 (2012).

    Article  Google Scholar 

  10. 10

    Gosden, C. & Robertson, N. in Report of the Lapita Homeland Project (eds Allen, A. & Gosden, C.) 20–91 (Occasional Papers in Prehistory 20, Department of Prehistory, Research School of Pacific Studies, Australian National Univ., 1991).

    Google Scholar 

  11. 11

    Golson, J. in Sunda and Sahul: Prehistoric Studies in Southeast Asia, Melanesia and Australia (eds Allen, J. et al. ) 601–638 (Academic, 1977).

    Google Scholar 

  12. 12

    Harris, D. Early agriculture in New Guinea and the Torres Strait divide. Antiquity 69, 848–854 (1995).

    Article  Google Scholar 

  13. 13

    Denham, T., Haberle, S. & Lentfer, C. New evidence and revised interpretations of early agriculture in Highland New Guinea. Antiquity 78, 839–857 (2004).

    Article  Google Scholar 

  14. 14

    Haberle, S. G. & Lusty, A. C. Can climate influence cultural development? A view through time. Env. Hist. 6, 349–369 (2000).

    Article  Google Scholar 

  15. 15

    Gaffney, D., Ford, A. & Summerhayes, G. Crossing the Pleistocene–Holocene transition in the New Guinea Highlands: evidence from the lithic assemblage of Kiowa rockshelter. J. Anthropol. Archaeol. 39, 223–246 (2015).

    Article  Google Scholar 

  16. 16

    Gaffney, D., Ford, A. & Summerhayes, G. Sue Bulmer’s legacy in Highland New Guinea: a re-examination of the Bulmer Collection and future directions. Archaeol. Ocean 51, 23–32 (2016).

    Article  Google Scholar 

  17. 17

    Denham, T. Revisiting the past: Sue Bulmer’s contribution to the archaeology of Papua New Guinea. Archaeol. Ocean 51, 5–10 (2016).

    Article  Google Scholar 

  18. 18

    Grimes, S. T., Collinson, M. E., Hooker, J. J. & Mattey, D. P. Is small beautiful? A review of the advantages and limitations of using small mammal teeth and the direct laser fluorination analysis technique in the isotope reconstruction of past continental climate change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 208, 103–119 (2008).

    Article  Google Scholar 

  19. 19

    Jeffrey, A., Denys, C., Stoetzel, E. & Lee-Thorp, J. A. Influences on the stable oxygen and carbon isotopes in gerbillid rodent teeth in semi-arid and arid environments: implications for past climate and environmental reconstruction. Earth Planet Sci. Lett. 428, 84–96 (2015).

    CAS  Article  Google Scholar 

  20. 20

    Lee-Thorp, J. A. & van der Merwe, N. J. Carbon isotope analysis of fossil bone apatite. S. Afr. J. Sci. 83, 712–715 (1987).

    Google Scholar 

  21. 21

    Cerling, T. E., Hart, J. A. & Hart, T. B. Isotope ecology in the Ituri forest. Oecologia 138, 5–12 (2004).

    Article  Google Scholar 

  22. 22

    Levin, N. E., Simpson, S. W., Quade, J., Cerling, T. E. & Frost, S. R. Herbivore enamel carbon isotopic composition and the environmental context of Ardipithecus at Gona, Ethiopia. Geol. Soc. Am. Spec. Pap. 446, 215–234 (2008).

    Google Scholar 

  23. 23

    Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503–537 (1989).

    CAS  Article  Google Scholar 

  24. 24

    Van der Merwe, N. J. & Medina, E. The canopy effect, carbon isotope ratios and foodwebs in Amazonia. J. Archaeol. Sci. 18, 249–259 (1991).

    Article  Google Scholar 

  25. 25

    Cerling, T. E. & Harris, J. M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 247–363 (1999).

    Google Scholar 

  26. 26

    O’Grady, P. et al. Hydrogen and oxygen isotope ratios in body water and hair: modeling isotope dynamics in nonhuman primates. Am. J. Primatol. 74, 651–660 (2012).

    Article  Google Scholar 

  27. 27

    Zazzo, A. et al. Isotopic composition of sheep wool records seasonality of climate and diet. Rapid Commun. Mass Spectrom. 29, 1357–1369 (2015).

    CAS  Article  Google Scholar 

  28. 28

    Gonfiantini, R., Roche, M.-A., Olivry, J.-C., Fontes, J.-C. & Zuppi, G. M. The altitude effect on the isotopic composition of tropical rains. Chem. Geol. 181, 147–167 (2001).

    CAS  Article  Google Scholar 

  29. 29

    Jolly, D. & Haxeltine, A. Effect of low glacial atmospheric CO2 on tropical African montane vegetation. Science 276, 786–788 (1997).

    CAS  Article  Google Scholar 

  30. 30

    Mayle, F. E., Beerling, D. J., Gosling, W. D. & Bush, M. B. Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the Last Glacial Maximum. Phil. Trans. R. Soc. Lond. B 359, 499–514 (2004).

    CAS  Article  Google Scholar 

  31. 31

    Francey, R. J. et al. A 1000-year high precision record of δ13C in atmospheric CO2 . Tellus B 51, 170–193 (1999).

    Article  Google Scholar 

  32. 32

    Lee-Thorp, J. A., van der Merwe, N. J. & Brain, C. K. Isotopic evidence for dietary differences between two extinct baboon species from Swartkrans (South Africa). J. Hum. Evol. 18, 183–190 (1989).

    Article  Google Scholar 

  33. 33

    Leichliter, J. N. et al. Small mammal insectivore stable carbon isotope compositions as habitat proxies in a South African savanna ecosystem. J. Archaeol. Sci. 8, 335–345 (2016).

    Google Scholar 

  34. 34

    D’Angela, D. & Longinelli, A. Oxygen isotopes in living mammal’s bone phosphate: further results. Chem. Geol. 86, 75–82 (1990).

    Google Scholar 

  35. 35

    Gehler, A., Tìtken, T. & Pack, A. Oxygen and carbon isotope variations in a modern rodent community—implications for palaeoenvironmental reconstructions. PLoS ONE 7, e49531 (2012).

    CAS  Article  Google Scholar 

  36. 36

    Fleming, T. H., Nuñez, R. A. & Sternberg, L. S. L. Seasonal changes in the diets of migrant and non-migrant nectarivorous bats as revealed by carbon stable isotope analysis. Oecologia 94, 72–75 (1993).

    Article  Google Scholar 

  37. 37

    Segers, J. L. & Broders, H. G. Carbon (δ13C) and nitrogen (δ15N) stable isotope signatures in bat fur indicate swarming sites have catchment areas for bats from different summering areas. PLoS ONE 10, e0125755 (2015).

    Article  Google Scholar 

  38. 38

    Premathilake, R. & Risberg, J. Late Quaternary history of the Horton Plains, central Sri Lanka. Quat. Sci. Rev. 22, 1525–1541 (2003).

    Article  Google Scholar 

  39. 39

    Roberts, P., et al. Direct evidence for human reliance on rainforest resources in late Pleistocene Sri Lanka. Science 347, 1246–1249 (2015).

    CAS  Article  Google Scholar 

  40. 40

    Sun, X., Li, X., Luo, Y. & Chen, X. The vegetation and climate at the last glaciation on the emerged continental shelf of the South China Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 160, 301–316 (2000).

    Article  Google Scholar 

  41. 41

    Hope, G. & Haberle, S. in Papuan Pasts: Studies in the Cultural, Linguistic and Biological History of the Papuan Speaking Peoples (eds Pawley, A. et al. ) 541–554 (Pacific Linguistics, Research School of Pacific and Asian Studies, Australian National Univ., 2005).

    Google Scholar 

  42. 42

    Haberle, S. G. Late Quaternary vegetation change in the Tari Basin, Papua New Guinea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 137, 1–24 (1998).

    Article  Google Scholar 

  43. 43

    Haberle, S. G. The emergence of an agricultural landscape in the highlands of New Guinea. Archaeol. Ocean 38, 149–158 (2003).

    Article  Google Scholar 

  44. 44

    Haberle, S. G., Hope, G. S. & van der Kaars, S. Biomass burning in Indonesia and Papua New Guinea: natural and human induced fire events in the fossil record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 171, 259–268 (2001).

    Article  Google Scholar 

  45. 45

    Haberle, S. G., Lentfer, C., O’Donnell, S. & Denham, T. The palaeoenvironments of Kuk Swamp from the beginnings of agriculture in the highlands of Papua New Guinea. Quat. Int. 249, 129–139 (2012).

    Article  Google Scholar 

  46. 46

    Binford, L. R. in New Perspectives in Archaeology (eds Binford, S. R. & Binford, L. R. ) 313–342 (Aldine, 1968).

    Google Scholar 

  47. 47

    Hayden, B. in Transitions to Agriculture in Prehistory (eds Gebauer, A. B. & Price, T. D. ) 11–18 (Prehistory, 1992).

    Google Scholar 

  48. 48

    Summerhayes, G. R., Field, J. H., Shaw, B. & Gaffney, D. The archaeology of forest exploitation and change in the tropics during the Pleistocene: the case of Northern Sahul (Pleistocene New Guinea). Quat. Int. http://dx.doi.org/10.1016/j.quaint.2016.04.023 (2016).

  49. 49

    Pavlides, C. in A Pacific Odyssey: Archaeology and Anthropology in the Western Pacific. Papers in Honour of Jim Specht (eds Attenbrow, V. J. & Fullager, R. ) 97–108 (Australian Museum, 2004).

    Google Scholar 

  50. 50

    Leavesley, M. in Archaeology of Oceania: Australia and the Pacific Islands (ed. Lilley, I. ) 189–204 (Blackwell, 2006).

    Google Scholar 

  51. 51

    Fairbairn, A. S., Hope, G. S. & Summerhayes, G. R. Pleistocene occupation of New Guinea’s highland and subalpine environments. World Archaeol. 38, 371–386 (2006).

    Article  Google Scholar 

  52. 52

    Mercader, J. (ed.) Under the Canopy: The Archaeology of Tropical Rainforests (Rutgers Univ. Press, 2002).

    Google Scholar 

  53. 53

    Roberts, P. & Petraglia, M. D. Pleistocene rainforests: barriers or attractive environments for early human foragers? World Archaeol. 47, 718–739 (2015).

    Article  Google Scholar 

  54. 54

    Denham, T. P. in The Routledge Handbook of Bioarchaeology in Southeast Asia and the Pacific Islands (eds Oxenham, M. & Buckley, H. ) 409–425 (Routledge, 2016).

    Google Scholar 

  55. 55

    Bellwood, P. First Farmers: The Origins of Agricultural Societies (Wiley, 2004).

    Google Scholar 

  56. 56

    Denham, T. P. Early agriculture and plant domestication in New Guinea and Island Southeast Asia. Curr. Anthropol. 52, S379–S395 (2011).

    Article  Google Scholar 

  57. 57

    Denham, T. P., Iriarte, I. & Vrydaghs, L. Rethinking Agriculture: Archaeological and Ethnoarchaeological Perspectives (Left Coast, 2007).

    Google Scholar 

  58. 58

    Bulmer, S. Prehistoric stone implements from the New Guinea Highlands. Oceania 34, 246–268 (1964).

    Article  Google Scholar 

  59. 59

    Bulmer, S. Radiocarbon dates from New Guinea. J. Polynesian Soc. 73, 327–328 (1964).

    Google Scholar 

  60. 60

    Sutton, A., Mountain, M.-J., Aplin, K., Bulmer, S. & Denham, T. P. Archaeozoological records for the highlands of New Guinea: a review of current evidence. Aust. Archaeol. 69, 41–58 (2009).

    Article  Google Scholar 

  61. 61

    Bulmer, R. The strategies of hunting in New Guinea. Oceania 38, 302–318 (1968).

    Article  Google Scholar 

  62. 62

    Dwyer, P. D. An annotated list of mammals from Mt. Elimbari, Eastern Highlands Province, Papua New Guinea. Sci. New Guinea 10, 28–38 (1983).

    Google Scholar 

  63. 63

    Dwyer, P. D. The price of protein: five hundred hours of hunting in the New Guinea Highlands. Oceania 44, 278–293 (1974).

    Article  Google Scholar 

  64. 64

    Flannery, T. F. Mammals of New Guinea (Cornell Univ. Press, 1995).

    Google Scholar 

  65. 65

    Leavesley, M. G. Trees to the Sky: Prehistoric Hunting in New Ireland, Papua New Guinea PhD thesis, Australian National Univ. (2004).

    Google Scholar 

  66. 66

    Sillitoe, P. Managing Mammals in New Guinea: Preying the Game in the Highlands (Routledge, 2003).

    Google Scholar 

  67. 67

    Clout, M. N. Determination of age in the brushtail possum using sections from decalcified molar teeth. New Zeal. J. Zool. 9, 405–408 (1982).

    Article  Google Scholar 

  68. 68

    Lee-Thorp, J. A. et al. Isotopic evidence for an early shift to C4 resources by Pliocene hominins in Chad. Proc. Natl Acad. Sci. USA 109, 20369–20372 (2012).

    CAS  Article  Google Scholar 

  69. 69

    Sponheimer, M. et al. Hominins, sedges, and termites: new carbon isotope data from the Sterkfontein valley and Kruger National Park. J. Hum. Evol. 48, 301–312 (2005).

    Article  Google Scholar 

  70. 70

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).

    Google Scholar 

Download references

Acknowledgements

This project was funded by grants from the Natural Environmental Research Council and the Boise Fund, University of Oxford (to P.R.). We also thank the National Museum and Art Gallery of Papua New Guinea for supporting this research. J. Menzies provided helpful insight into the zoology. Finally, a special thanks goes to Sue Bulmer and her family for providing us with access to the materials and field notes for the site of Kiowa. We dedicate this paper to Sue, who sadly passed away during the writing of this paper—her legacy in Pacific archaeology and at the site of Kiowa remains.

Author information

Affiliations

Authors

Contributions

P.R., D.G., J.L.-T. and G.S. designed and performed the research, analysed the data and wrote the paper.

Corresponding author

Correspondence to Patrick Roberts.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Text; Supplementary Figures 1–3; Supplementary Tables 1–16; Supplementary References (PDF 738 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roberts, P., Gaffney, D., Lee-Thorp, J. et al. Persistent tropical foraging in the highlands of terminal Pleistocene/Holocene New Guinea. Nat Ecol Evol 1, 0044 (2017). https://doi.org/10.1038/s41559-016-0044

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing