Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The genomic landscape of evolutionary convergence in mammals, birds and reptiles

Abstract

Many lineage-defining (nodal) mutations possess high functionality. However, differentiating adaptive nodal mutations from those that are functionally compensated remains challenging. To address this challenge, we identified functional nodal mutations (fNMs) in ~3,400 nuclear DNA (nDNA) and 4 mitochondrial DNA (mtDNA) protein structures from 91 and 1,003 species, respectively, representing the entire mammalian, bird and reptile phylogeny. A screen for candidate compensatory mutations among co-occurring amino acid changes in close structural proximity revealed that such compensated fNMs encompass 37% and 27% of the mtDNA and nDNA datasets, respectively. Analysis of the remaining (non-compensated) mutations, which are enriched for adaptive mutations, showed that birds and mammals share most such recurrent fNMs (N = 51). Among the latter, we discovered mutations in thermoregulation-related genes. These represent the best candidates to explain the molecular basis of convergent body thermoregulation in birds and mammals. Our analysis reveals the landscape of possible mutational compensation and convergence in amniote phylogeny.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Illustration demonstrating fNM potential compensation and possible adaptation in a protein-coding gene.
Figure 2: Prevalence assessment of potential compensation for fNMs in amniotes.
Figure 3: Analysis of shared non-compensated fRNMs between all possible tree branches.

References

  1. Breen, M. S., Kemena, C., Vlasov, P. K., Notredame, C. & Kondrashov, F. A. Epistasis as the primary factor in molecular evolution. Nature 490, 535–538 (2012).

    CASĀ  ArticleĀ  Google ScholarĀ 

  2. Levin, L., Zhidkov, I., Gurman, Y., Hawlena, H. & Mishmar, D. Functional recurrent mutations in the human mitochondrial phylogeny — dual roles in evolution and disease. Genome Biol. Evol. 5, 876–890 (2013).

    ArticleĀ  Google ScholarĀ 

  3. Rosenberg, N. A. et al. Genome-wide association studies in diverse populations. Nat. Rev. Genet. 11, 356–366 (2010).

    CASĀ  ArticleĀ  Google ScholarĀ 

  4. Kern, A. D. & Kondrashov, F. A. Mechanisms and convergence of compensatory evolution in mammalian mitochondrial tRNAs. Nat. Genet. 36, 1207–1212 (2004).

    CASĀ  ArticleĀ  Google ScholarĀ 

  5. Schaner, P. et al. Episodic evolution of pyrin in primates: human mutations recapitulate ancestral amino acid states. Nat. Genet. 27, 318–321 (2001).

    CASĀ  ArticleĀ  Google ScholarĀ 

  6. Zhang, G. et al. Triangulation of the human, chimpanzee, and Neanderthal genome sequences identifies potentially compensated mutations. Hum. Mutat. 31, 1286–1293 (2010).

    ArticleĀ  Google ScholarĀ 

  7. Moreno-Loshuertos, R. et al. Evolution meets disease: penetrance and functional epistasis of mitochondrial tRNA mutations. PLoS Genet. 7, e1001379 (2011).

    CASĀ  ArticleĀ  Google ScholarĀ 

  8. Poon, A. & Chao, L. The rate of compensatory mutation in the DNA bacteriophage phiX174. Genetics 170, 989–999 (2005).

    CASĀ  ArticleĀ  Google ScholarĀ 

  9. Poon, A. F. & Chao, L. Functional origins of fitness effect-sizes of compensatory mutations in the DNA bacteriophage phiX174. Evolution 60, 2032–2043 (2006).

    CASĀ  Google ScholarĀ 

  10. Tenaillon, O. et al. The molecular diversity of adaptive convergence. Science 335, 457–461 (2012).

    CASĀ  ArticleĀ  Google ScholarĀ 

  11. Kryazhimskiy, S., Rice, D. P., Jerison, E. R. & Desai, M. M. Microbial evolution. Global epistasis makes adaptation predictable despite sequence-level stochasticity. Science 344, 1519–1522 (2014).

    CASĀ  ArticleĀ  Google ScholarĀ 

  12. Mishmar, D. et al. Natural selection shaped regional mtDNA variation in humans. Proc. Natl Acad. Sci. USA 100, 171–176 (2003).

    CASĀ  ArticleĀ  Google ScholarĀ 

  13. Nachman, M. W., Brown, W. M., Stoneking, M. & Aquadro, C. F. Nonneutral mitochondrial DNA variation in humans and chimpanzees. Genetics 142, 953–963 (1996).

    CASĀ  Google ScholarĀ 

  14. Parmakelis, A., Kotsakiozi, P. & Rand, D. Animal mitochondria, positive selection and cyto-nuclear coevolution: insights from pulmonates. PLoS ONE 8, e61970 (2013).

    CASĀ  ArticleĀ  Google ScholarĀ 

  15. Levin, L., Blumberg, A., Barshad, G. & Mishmar, D. Mito-nuclear co-evolution: the positive and negative sides of functional ancient mutations. Front. Genet. 5, 448 (2014).

    ArticleĀ  Google ScholarĀ 

  16. Sabeti, P. C. et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002).

    CASĀ  ArticleĀ  Google ScholarĀ 

  17. Liu, X. et al. Detecting and characterizing genomic signatures of positive selection in global populations. Am. J. Hum. Genet. 92, 866–881 (2013).

    CASĀ  ArticleĀ  Google ScholarĀ 

  18. McCandlish, D. M., Rajon, E., Shah, P., Ding, Y. & Plotkin, J. B. The role of epistasis in protein evolution. Nature 497, E1–2; discussion E2–3 (2013).

    ArticleĀ  Google ScholarĀ 

  19. Baresic, A., Hopcroft, L. E., Rogers, H. H., Hurst, J. M. & Martin, A. C. Compensated pathogenic deviations: analysis of structural effects. J. Mol. Biol. 396, 19–30 (2010).

    CASĀ  ArticleĀ  Google ScholarĀ 

  20. Foote, A. D. et al. Convergent evolution of the genomes of marine mammals. Nat. Genet. 47, 272–275 (2015).

    CASĀ  ArticleĀ  Google ScholarĀ 

  21. Stern, D. L. The genetic causes of convergent evolution. Nat. Rev. Genet. 14, 751–764 (2013).

    CASĀ  ArticleĀ  Google ScholarĀ 

  22. Bernt, M. & Middendorf, M. A method for computing an inventory of metazoan mitochondrial gene order rearrangements. BMC Bioinformat. 12 Suppl. 9, S6 (2011).

    ArticleĀ  Google ScholarĀ 

  23. Ivankov, D. N., Finkelstein, A. V. & Kondrashov, F. A. A structural perspective of compensatory evolution. Curr. Opin. Struct. Biol. 26, 104–112 (2014).

    CASĀ  ArticleĀ  Google ScholarĀ 

  24. Osada, N. & Akashi, H. Mitochondrial-nuclear interactions and accelerated compensatory evolution: evidence from the primate cytochrome c oxidase complex. Mol. Biol. Evol. 29, 337–346 (2012).

    CASĀ  ArticleĀ  Google ScholarĀ 

  25. Filteau, M. et al. Evolutionary rescue by compensatory mutations is constrained by genomic and environmental backgrounds. Mol. Syst. Biol. 11, 832 (2015).

    ArticleĀ  Google ScholarĀ 

  26. Blount, Z. D., Borland, C. Z. & Lenski, R. E. Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli . Proc. Natl Acad. Sci. USA 105, 7899–7906 (2008).

    CASĀ  ArticleĀ  Google ScholarĀ 

  27. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CASĀ  ArticleĀ  Google ScholarĀ 

  28. Pei, J., Kim, B.-H. & Grishin, N. V. PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res. 36, 2295–2300 (2008).

    CASĀ  ArticleĀ  Google ScholarĀ 

  29. Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935 (2013).

    CASĀ  ArticleĀ  Google ScholarĀ 

  30. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    CASĀ  ArticleĀ  Google ScholarĀ 

  31. Meredith, R. W. et al. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334, 521–524 (2011).

    CASĀ  ArticleĀ  Google ScholarĀ 

  32. Morgan, C. C. et al. Heterogeneous models place the root of the placental mammal phylogeny. Mol. Biol. Evol. 30, 2145–2156 (2013).

    CASĀ  ArticleĀ  Google ScholarĀ 

  33. Hackett, S. J. et al. A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768 (2008).

    CASĀ  ArticleĀ  Google ScholarĀ 

  34. Vidal, N. & Hedges, S. B. The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. C. R. Biol. 328, 1000–1008 (2005).

    CASĀ  ArticleĀ  Google ScholarĀ 

  35. Glaser, F. et al. ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19, 163–164 (2003).

    CASĀ  ArticleĀ  Google ScholarĀ 

  36. Grantham, R. Amino acid difference formula to help explain protein evolution. Science 185, 862–864 (1974).

    CASĀ  ArticleĀ  Google ScholarĀ 

  37. Kondrashov, A. S., Sunyaev, S. & Kondrashov, F. A. Dobzhansky–Muller incompatibilities in protein evolution. Proc. Natl Acad. Sci. USA 99, 14878–14883 (2002).

    CASĀ  ArticleĀ  Google ScholarĀ 

  38. Hanada, R. et al. Central control of fever and female body temperature by RANKL/RANK. Nature 462, 505–509 (2009).

    CASĀ  ArticleĀ  Google ScholarĀ 

  39. Zhang, Y. et al. Targeted deletion of thioesterase superfamily member 1 promotes energy expenditure and protects against obesity and insulin resistance. Proc. Natl Acad. Sci. USA 109, 5417–5422 (2012).

    CASĀ  ArticleĀ  Google ScholarĀ 

  40. Taylor-Burt, K. R., Monroy, J., Pace, C., Lindstedt, S. & Nishikawa, K. C. Shiver me titin! Elucidating titin’s role in shivering thermogenesis. J. Exp. Biol. 218, 694–702 (2015).

    ArticleĀ  Google ScholarĀ 

  41. Miinalainen, I. J. et al. Mitochondrial 2,4-dienoyl-CoA reductase deficiency in mice results in severe hypoglycemia with stress intolerance and unimpaired ketogenesis. PLoS Genet. 5, e1000543 (2009).

    ArticleĀ  Google ScholarĀ 

  42. Caterina, M. J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000).

    CASĀ  ArticleĀ  Google ScholarĀ 

  43. Ramsey, K. M. et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324, 651–654 (2009).

    CASĀ  ArticleĀ  Google ScholarĀ 

Download references

Acknowledgements

We thank R. Zarivach for critical discussions and the Negev Foundation for a Scholarship of Excellence awarded to L.L. This study was funded by research grants from the Israeli Science Foundation (610/12), Binational Science Foundation and a US Army Life Science division grant 67993LS awarded to D.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Mishmar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–5; supplementary Tables 1–4 (PDF 1434 kb)

Supplementary Dataset 1

Nodal mutations identified in mtDNA tRNAs genes, mtDNA rRNAs genes and nodal mutations identified in mtDNA protein coding genes. (XLSX 3372 kb)

Supplementary Dataset 2

Nodal mutations identified in nDNA-encoded protein genes. (XLSX 16633 kb)

Supplementary Dataset 3

MATLAB scripts generated for the analysis presented in this Article. (ZIP 3831 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Levin, L., Mishmar, D. The genomic landscape of evolutionary convergence in mammals, birds and reptiles. Nat Ecol Evol 1, 0041 (2017). https://doi.org/10.1038/s41559-016-0041

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-016-0041

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing