Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global marine protected areas to prevent extinctions

Abstract

One goal of global marine protected areas (MPAs) is to ensure they represent a breadth of taxonomic biodiversity. Ensuring representation of species in MPAs, however, would require protecting vast areas of the global oceans and does not explicitly prioritize species of conservation concern. When threatened species are considered, a recent study found that only a small fraction of their geographic ranges are within the global MPA network. Which global marine areas, and what conservation actions beyond MPAs could be prioritized to prevent marine extinctions (Convention on Biological Diversity Aichi Target 12), remains unknown. Here, we use systematic conservation planning approaches to prioritize conservation actions for sharks, rays and chimaeras (class Chondrichthyes). We use chondrichthyans as they have the highest proportion of threatened species of any marine class. We find that expanding the MPA network by 3% in 70 nations would cover half of the geographic range of 99 imperilled endemic chondrichthyans. Our hotspot analysis reveals that just 12 nations harbour more than half (53) of the imperilled endemics. Four of these hotspot nations are within the top ten chondrichthyan fishing nations in the world, but are yet to implement basic chondrichthyan fisheries management. Given their geopolitical realities, conservation action for some countries will require relief and reorganization to enable sustainable fisheries and species protection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representation of the most imperilled and endemic chondrich­thyans in the world’s MPAs.
Figure 2: Spatial conservation options for two systematic conservation planning approaches.
Figure 3: Fisheries management and conservation needs beyond MPAs.
Figure 4: Priority countries, conservation likelihood, and the presence and strength of the chondrichthyan management.

Similar content being viewed by others

References

  1. Wood, L. J., Fish, L., Laughren, J. & Pauly, D. Assessing progress towards global marine protection targets: shortfalls in information and action. Oryx 42, 340–351 (2008).

    Article  Google Scholar 

  2. Lubchenco, J. & Grorud-Colvert, K. Making waves: the science and politics of ocean protection. Science 350, 382–383 (2015).

    Article  CAS  Google Scholar 

  3. Rodrigues, A. S. L. et al. Effectiveness of the global protected area network in representing species diversity. Nature 428, 9–12 (2004).

    Article  Google Scholar 

  4. Klein, C. J. et al. Shortfalls in the global protected area network at representing marine biodiversity. Sci. Rep. 5, 17539 (2015).

    Article  Google Scholar 

  5. Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).

    Article  Google Scholar 

  6. Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).

    Article  Google Scholar 

  7. Le Saout, S. et al. Protected areas and effective biodiversity conservation. Science 342, 803–805 (2013).

    Article  CAS  Google Scholar 

  8. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Article  CAS  Google Scholar 

  9. Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).

    Article  CAS  Google Scholar 

  10. Rondinini, C., Wilson, K. A., Boitani, L., Grantham, H. & Possingham, H. P. Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecol. Lett. 9, 1136–1145 (2006).

    Article  Google Scholar 

  11. Possingham, H. P. & Wilson, K. A. Turning up the heat on hotspots. Nature 436, 919–920 (2005).

    Article  CAS  Google Scholar 

  12. Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. eLife 3, e00590 (2014).

    Article  Google Scholar 

  13. Hilborn, R. Marine biodiversity needs more than protection. Nature 535, 224–226 (2016).

    Article  CAS  Google Scholar 

  14. Shiffman, D. S. & Hammerschlag, N. Preferred conservation policies of shark researchers. Conserv. Biol. 30, 805–815 (2016).

    Article  Google Scholar 

  15. Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010).

    Article  CAS  Google Scholar 

  16. Rodrigues, A. S. L. Improving coarse species distribution data for conservation planning in biodiversity-rich, data-poor, regions: no easy shortcuts. Anim. Conserv. 14, 108–110 (2011).

    Article  Google Scholar 

  17. MPAtlas (Marine Conservation Institute, 2016); www.mpatlas.org

  18. Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).

    Article  CAS  Google Scholar 

  19. Ball, I. R., Possingham, H. P. & Watts M. E. in Spatial Conservation Prioritisation: Quantitative Methods and Computational Tools (eds Moilanen, A., Wilson, K. A. & Possingham, H. ) 185–195 (Oxford Univ. Press, 2009).

    Google Scholar 

  20. Boonzaier, L. & Pauly, D. Marine protection targets: an updated assessment of global progress. Oryx 50, 1–9 (2015).

    Google Scholar 

  21. Pauly, D. & Zeller, D. Catch Reconstruction: Concepts, Methods and Data Sources (Univ. British Columbia, 2015); www.seaaroundus.org

  22. Dickman, A. J., Hinks, A. E., Macdonald, E. A, Burnham, D. & Macdonald, D. W. Priorities for global felid conservation. Conserv. Biol. 29, 854–864 (2015).

    Article  Google Scholar 

  23. McClanahan, T. R. et al. Identifying reefs of hope and hopeful actions: contextualizing environmental, ecological, and social parameters to respond effectively to climate change. Conserv. Biol. 23, 662–671 (2009).

    Article  CAS  Google Scholar 

  24. Devillers, R. et al. Reinventing residual reserves in the sea: are we favouring ease of establishment over need for protection? Aquat. Conserv. Mar. Freshwat. Ecosyst. 25, 480–504 (2014).

    Article  Google Scholar 

  25. Jones, P. J. S. & Santo, E. M. De . Viewpoint – Is the race for remote, very large marine protected areas (VLMPAs ) taking us down the wrong track? Mar. Policy 73, 231–234 (2016).

    Article  Google Scholar 

  26. Butchart, S. H. M. et al. Protecting important sites for biodiversity contributes to meeting global conservation targets. PLoS ONE 7, e32529 (2012).

    Article  CAS  Google Scholar 

  27. Gell, F. R. & Roberts, C. M. Benefits beyond boundaries: the fishery effects of marine reserves. Trends Ecol. Evol. 18, 448–455 (2003).

    Article  Google Scholar 

  28. Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).

    Article  CAS  Google Scholar 

  29. Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

    Article  CAS  Google Scholar 

  30. Costello, M. J. & Ballantine, B. Biodiversity conservation should focus on no-take marine reserves: 94% of Marine Protected Areas allow fishing. Trends Ecol. Evol. 30, 507–509 (2015).

    Article  Google Scholar 

  31. Simpfendorfer, C. A. & Dulvy, N. K. Bright spots of sustainable shark fishing. Curr. Biol. (in the press).

  32. Allison, E. H. et al. Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish. 10, 173–196 (2009).

    Article  Google Scholar 

  33. Turner, B. L. et al. A framework for vulnerability analysis in sustainability science. Proc. Natl Acad. Sci. USA 100, 8074–8079 (2003).

    Article  CAS  Google Scholar 

  34. Rondinini, C. & Chiozza, F. Quantitative methods for defining percentage area targets for habitat types in conservation planning. Biol. Conserv. 143, 1646–1653 (2010).

    Article  Google Scholar 

  35. Guidelines for Appropriate Uses of IUCN Red List Data: Incorporating the Guidelines for Reporting on Proportion Threatened and the Guidelines on Scientific Collecting of Threatened Species (IUCN, 2011); https://portals.iucn.org/library/node/12734

  36. Kyne, P. M. Extinction risk categories and how to cite them. Mitochondr. DNA A 1394, 508–509 (2016).

    Article  Google Scholar 

  37. Salafsky, N. et al. A standard lexicon for biodiversity conservation: unified classifications of threats and actions. Conserv. Biol. 22, 897–911 (2008).

    Article  Google Scholar 

  38. Roberts, C. M. et al. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science. 295, 1280–1284 (2002).

    Article  CAS  Google Scholar 

  39. Davidson, A. D., Boyer, A. G., Kim, H., Pompa-Mansilla, S. & Hamilton, M. J. Drivers and hotspots of extinction risk in marine mammals. Proc. Natl Acad. Sci. USA 109, 3395–3400 (2012).

    Article  CAS  Google Scholar 

  40. Pompa, S., Ehrlich, P. R. & Ceballos, G. Global distribution and conservation of marine mammals. Proc. Natl Acad. Sci. USA 108, 13600–13605 (2011).

    Article  CAS  Google Scholar 

  41. Knip, D. M., Heupel, M. R. & Simpfendorfer, C. A. Evaluating Marine Protected Areas for the conservation of tropical coastal sharks. Biol. Conserv. 148, 200–209 (2012).

    Article  Google Scholar 

  42. Daley, R. K., Williams, A., Green, M., Barker, B. & Brodie, P. Can marine reserves conserve vulnerable sharks in the deep sea? A case study of Centrophorus zeehaani (Centrophoridae), examined with acoustic telemetry. Deep Sea Res. II 115, 127–136 (2015).

    Article  Google Scholar 

  43. Heupel, M. R. & Simfendorfer, C. A. Using acoustic monitoring to evaluate MPAs for shark nursery areas: the importance of long-term data. Mar. Technol. Soc. J. 39, 10–18 (2005).

    Article  Google Scholar 

  44. Edgar, G. J. et al. Key biodiversity areas as globally significant target sites for the conservation of marine biological diversity. Aquat. Conserv. 983, 969–983 (2011).

    Article  Google Scholar 

  45. Ban, N. C., Alidina, H. M. & Ardron, J. A. Cumulative impact mapping: advances, relevance and limitations to marine management and conservation, using Canada’s Pacific waters as a case study. Mar. Policy 34, 876–886 (2010).

    Article  Google Scholar 

  46. Eakins, B. W. & Sharman, G. F. Volumes of the World’s Oceans from ETOPO1 (NOAA National Geophysical Data Center, 2010); http://www.ngdc.noaa.gov/

  47. Davidson, L. N. K., Krawchuk, M. A. & Dulvy, N. K. Why have global shark and ray landings declined: improved management or overfishing? Fish Fish. 17, 438–458 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We thank all of the IUCN SSG members and all additional experts who have contributed data and their expertise to IUCN Red List assessments. We also thank I. Côté, M. Krawchuk, J. Brogan, J. Bigman, S.V. Fordham (Shark Advocates International), A. Kissel, J. Lawson, C. Mull, R. Murray, S. Pardo, W. Stein, R. Walls, past Dulvy Lab members and Earth to Ocean Research Group. This project was funded by the National Science and Engineering Research Council of Canada, Canada Research Chairs Program, John D. and Catherine T. MacArthur Foundation, Leonardo DiCaprio Foundation, Disney Conservation Fund and the Wildlife Conservation Society.

Author information

Authors and Affiliations

Authors

Contributions

L.N.K.D. and N.K.D. conceived the project, designed the study, analysed the data and wrote the paper.

Corresponding author

Correspondence to Lindsay N. K. Davidson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1 and 2, Supplementary Tables 1–5 (PDF 515 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidson, L., Dulvy, N. Global marine protected areas to prevent extinctions. Nat Ecol Evol 1, 0040 (2017). https://doi.org/10.1038/s41559-016-0040

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-016-0040

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing