Experimental test and refutation of a classic case of molecular adaptation in Drosophila melanogaster

Abstract

Identifying the genetic basis for adaptive differences between species requires explicit tests of historical hypotheses concerning the effects of past changes in gene sequence on molecular function, organismal phenotype and fitness. We address this challenge by combining ancestral protein reconstruction with biochemical experiments and physiological analysis of transgenic animals that carry ancestral genes. We tested a widely held hypothesis of molecular adaptation—that changes in the alcohol dehydrogenase protein (ADH) along the lineage leading to Drosophilamelanogaster increased the catalytic activity of the enzyme and thereby contributed to the ethanol tolerance and adaptation of the species to its ethanol-rich ecological niche. Our experiments strongly refute the predictions of the adaptive ADH hypothesis and caution against accepting intuitively appealing accounts of historical molecular adaptation that are based on correlative evidence. The experimental strategy we employed can be used to decisively test other adaptive hypotheses and the claims they entail about past biological causality.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Predictions of the classic hypothesis of ADH adaptive evolution.
Figure 2: Effects of ADH sequence divergence on the activity of purified enzymes.
Figure 3: Effects of ADH sequence divergence on ethanol catabolism and fitness in transgenic flies.
Figure 4: Sequence evolution on the phylogeny of D. melanogaster and closely related species.

References

  1. 1

    Sabeti, P. C. et al. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).

    CAS  Article  Google Scholar 

  3. 3

    Liu, S. et al. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. Cell 157, 785–794 (2014).

    CAS  Article  Google Scholar 

  4. 4

    Shen, Y.-Y. et al. Adaptive evolution of energy metabolism genes and the origin of flight in bats. Proc. Natl Acad. Sci. USA 107, 8666–8671 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Li, J. et al. Joint analysis of demography and selection in population genetics: where do we stand and where could we go? Mol. Ecol. 21, 28–44 (2012).

    CAS  Article  Google Scholar 

  6. 6

    Storz, J. F. & Wheat, C. W. Integrating evolutionary and functional approaches to infer adaptation at specific loci. Evolution 64, 2489–2509 (2010).

    CAS  Article  Google Scholar 

  7. 7

    Barrett, R. D. H. & Hoekstra, H. E. Molecular spandrels: tests of adaptation at the genetic level. Nat. Rev. Genet. 12, 767–780 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Lewontin, R. C. Twenty-five years ago in genetics: electrophoresis in the development of evolutionary genetics: milestone or millstone? Genetics 128, 657 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Lewontin, R. C. The Genetic Basis of Evolutionary Change (Columbia Univ. Press, 1974).

    Google Scholar 

  10. 10

    Feder, M. E. & Watt, W. B. in Genes in Ecology (eds Berry, R. J. et al. ) 365–392 (Blackwell Scientific, 1992).

    Google Scholar 

  11. 11

    Storz, J. F. et al. Evolutionary and functional insights into the mechanism underlying high-altitude adaptation of deer mouse hemoglobin. Proc. Natl Acad. Sci. USA 106, 14450–14455 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Prasad, K. V. S. K. et al. A gain-of-function polymorphism controlling complex traits and fitness in nature. Science 337, 1081–1084 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Tishkoff, S. A. et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat. Genet. 39, 31–40 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Linnen, C. R. et al. Adaptive evolution of multiple traits through multiple mutations at a single gene. Science 339, 1312–1316 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Chan, Y. F. et al. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327, 302–305 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Cheviron, Z. A. et al. Integrating evolutionary and functional tests of adaptive hypotheses: a case study of altitudinal differentiation in hemoglobin function in an Andean sparrow, Zonotrichia capensis . Mol. Biol. Evol. 31, 2948–2962 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Harms, M. J. & Thornton, J. W. Analyzing protein structure and function using ancestral gene reconstruction. Curr. Opin. Struct. Biol. 20, 360–366 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Heinstra, P. W., Thörig, G. E., Scharloo, W., Drenth, W. & Nolte, R. J. Kinetics and thermodynamics of ethanol oxidation catalyzed by genetic variants of the alcohol dehydrogenase from Drosophila melanogaster and D. simulans . Biochim. Biophys. Acta 967, 224–233 (1988).

    CAS  Article  Google Scholar 

  19. 19

    Freeman, S. & Herron, J. C. Evolutionary Analysis (Pearson Prentice Hall, 2007).

    Google Scholar 

  20. 20

    Johnson, N. A. Darwinian Detectives: Revealing the Natural History of Genes and Genomes (Oxford Univ. Press, 2007).

    Google Scholar 

  21. 21

    Kreitman, M., Shorrocks, B. & Dytham, C. in Genes in Ecology (eds Berry, R. J. et al. ) 281–312 (Blackwell Scientific, 1992).

    Google Scholar 

  22. 22

    Fox, C. W. & Wolf, J. B. Evolutionary Genetics: Concepts and Case Studies (Oxford Univ. Press, 2006).

    Google Scholar 

  23. 23

    Ruse, M. Darwin and Design: Does Evolution Have a Purpose? (Harvard Univ. Press, 2003).

    Google Scholar 

  24. 24

    Heinstra, P. W. H. Evolutionary genetics of the Drosophila alcohol dehydrogenase gene-enzyme system. Genetica 92, 1–22 (1993).

    CAS  Article  Google Scholar 

  25. 25

    McKenzie, J. A. & Parsons, P. A. Alcohol tolerance: an ecological parameter in the relative success of Drosophila melanogaster and Drosophila simulans . Oecologia 10, 373–388 (1972).

    CAS  Article  Google Scholar 

  26. 26

    McDonald, J. F. & Avise, J. C. Evidence for the adaptive significance of enzyme activity levels: interspecific variation in α-GPDH and ADH in Drosophila . Biochem. Genet. 14, 347–355 (1976).

    CAS  Article  Google Scholar 

  27. 27

    Heinstra, P. W. H., Scharloo, W. & Thorig, G. E. W. Physiological significance of the alcohol dehydrogenase polymorphism in larvae of Drosophila . Genetics 117, 75–84 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    McDonald, J. H. & Kreitman, M. Adaptive protein evolution at the Adh locus in Drosophila . Nature 351, 652–654 (1991).

    CAS  Article  Google Scholar 

  29. 29

    Hartl, D. L. & Clark, A. G. Principles of Population Genetics 4th edn (Sinauer Associates, 2007).

    Google Scholar 

  30. 30

    Charlesworth, B. & Charlesworth, D. Population genetics from 1966 to 2016. Heredity (2016).

  31. 31

    Dickinson, W. J., Rowan, R. G. & Brennan, M. D. Regulatory gene evolution: adaptive differences in expression of alcohol dehydrogenase in Drosophila melanogaster and Drosophila simulans . Heredity 52, 215–225 (1984).

    CAS  Article  Google Scholar 

  32. 32

    Laurie, C. C., Heath, E. M., Jacobson, J. W. & Thomson, M. S. Genetic basis of the difference in alcohol dehydrogenase expression between Drosophila melanogaster and Drosophila simulans . Proc. Natl Acad. Sci. USA 87, 9674–9678 (1990).

    CAS  Article  Google Scholar 

  33. 33

    Thomson, M. S., Jacobson, J. W. & Laurie, C. C. Comparison of alcohol dehydrogenase expression in Drosophila melanogaster and Drosophila simulans . Mol. Biol. Evol. 8, 31–48 (1991).

    CAS  PubMed  Google Scholar 

  34. 34

    Montooth, K. L., Siebenthall, K. T. & Clark, A. G. Membrane lipid physiology and toxin catabolism underlie ethanol and acetic acid tolerance in Drosophila melanogaster . J. Exp. Biol. 209, 3837–3850 (2006).

    CAS  Article  Google Scholar 

  35. 35

    Kaun, K. R., Devineni, A. V. & Heberlein, U. Drosophila melanogaster as a model to study drug addiction. Hum. Genet. 131, 959–975 (2012).

    CAS  Article  Google Scholar 

  36. 36

    Fry, J. D. Mechanisms of naturally evolved ethanol resistance in Drosophila melanogaster . J. Exp. Biol. 217, 3996–4003 (2014).

    Article  Google Scholar 

  37. 37

    Sezgin, E. et al. Single-locus latitudinal clines and their relationship to temperate adaptation in metabolic genes and derived alleles in Drosophila melanogaster . Genetics 168, 923–931 (2004).

    CAS  Article  Google Scholar 

  38. 38

    Umina, P. A., Weeks, A. R., Kearney, M. R., McKechnie, S. W. & Hoffmann, A. A. A rapid shift in a classic clinal pattern in Drosophila reflecting climate change. Science 308, 691–693 (2005).

    CAS  Article  Google Scholar 

  39. 39

    Laurie, C. C. & Stam, L. F. The effect of an intronic polymorphism on alcohol dehydrogenase expression in Drosophila melanogaster . Genetics 138, 379–385 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Begun, D. J., Betancourt, A. J., Langley, C. H. & Stephan, W. Is the fast/slow allozyme variation at the Adh locus of Drosophila melanogaster an ancient balanced polymorphism? Mol. Biol. Evol. 16, 1816–1819 (1999).

    CAS  Article  Google Scholar 

  41. 41

    Berry, A. & Kreitman, M. Molecular analysis of an allozyme cline: alcohol dehydrogenase in Drosophila melanogaster on the east coast of North America. Genetics 134, 869–893 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Pool, J. E. et al. Population genomics of sub-Saharan Drosophila melanogaster: African diversity and non-African admixture. PLoS Genet. 8, e1003080 (2012).

    Article  Google Scholar 

  43. 43

    Parsons, P. A. Ethanol utilization: threshold differences among six closely related species of Drosophila . Aust. J. Zool. 28, 535–541 (1980).

    CAS  Article  Google Scholar 

  44. 44

    Stam, L. F. & Laurie, C. C. Molecular dissection of a major gene effect on a quantitative trait: the level of alcohol dehydrogenase expression in Drosophila melanogaster . Genetics 144, 1559–1564 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Hudson, R. R., Kreitman, M. & Aguadé, M. A test of neutral molecular evolution based on nucleotide data. Genetics 116, 153–159 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Oakeshott, J. G. et al. Alcohol dehydrogenase and glycerol-3-phosphate dehydrogenase clines in Drosophila melanogaster on different continents. Evolution 36, 86–96 (1982).

    CAS  Article  Google Scholar 

  47. 47

    Yang, Z., Kumar, S. & Nei, M. A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 141, 1641–1650 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Loehlin, D. W. & Carroll, S. B. Expression of tandem gene duplicates is often greater than twofold. Proc. Natl Acad. Sci. USA 113, 5988–5992 (2016).

    CAS  Article  Google Scholar 

  49. 49

    Eyre-Walker, A. Changing effective population size and the McDonald–Kreitman test. Genetics 162, 2017–2024 (2002).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Picton, K. O’Brien, K. Gordon and members of the C. Meiklejohn and K. Montooth laboratories for technical assistance. We thank D. Matute for providing polymorphism data for D.yakuba. We thank M. Kreitman, members of the J. Thornton laboratory and D. Anderson for comments and suggestions that enriched the project. The project was supported by a National Science Foundation (NSF) grant (DEB-1501877; J.W.T./M.A.S.), an NSF graduate research fellowship (M.A.S.), National Institutes of Health (NIH) grant (R01-GM104397; J.W.T.), NSF CAREER Award (1505247; K.L.M.) and an NIH training grant (T32-GM007197; M.A.S.). D.W.L. was supported by a Howard Hughes Medical Institute postdoctoral fellowship from the Life Sciences Research Foundation and an investigatorship to S. B. Carroll from the Howard Hughes Medical Institute.

Author information

Affiliations

Authors

Contributions

M.A.S. and J.W.T. conceived the project. All authors participated in the experimental design. M.A.S. performed the phylogenetic and population genetic analyses. D.W.L. constructed the transgenic animals. M.A.S., D.W.L. and K.L.M. performed the functional experiments. All authors participated in data analysis and interpretation. M.A.S. and J.W.T. wrote the paper with contributions from D.W.L. and K.L.M.

Corresponding author

Correspondence to Joseph W. Thornton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1–4 and Supplementary Tables 1–4 (PDF 1005 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Siddiq, M., Loehlin, D., Montooth, K. et al. Experimental test and refutation of a classic case of molecular adaptation in Drosophila melanogaster. Nat Ecol Evol 1, 0025 (2017). https://doi.org/10.1038/s41559-016-0025

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing