Species-rich networks and eco-evolutionary synthesis at the metacommunity level

Abstract

Understanding how ecological and evolutionary processes interdependently structure biosphere dynamics is a major challenge in the era of worldwide ecosystem degradation. However, our knowledge of ‘eco-evolutionary feedbacks’ depends largely on findings from simple systems representing limited spatial scales and involving few species. Here we review recent conceptual developments for the understanding of multispecies coevolutionary processes and then discuss how new lines of concepts and methods will accelerate the integration of ecology and evolutionary biology. To build a research workflow for integrating insights into spatiotemporal dynamics of species-rich systems, we focus on the roles of ‘metacommunity hub’ species, whose population size and/or genetic dynamics potentially control landscape- or regional-scale phenomena. As large amounts of network data are becoming available with high-throughput sequencing of various host–symbiont, prey–predator, and symbiont–symbiont interactions, we suggest it is now possible to develop bases for the integrated understanding and management of species-rich ecosystems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Evolving metacommunities and species-rich networks.
Figure 2: Flow of high-throughput sequencing and network analysis.
Figure 3: Local community- and metacommunity-level networks.
Figure 4: Empirical study framework for spatiotemporal dynamics in metacommunities.

References

  1. 1

    Darwin, C. On the Origin of Species by Means of Natural Selection (J. Murray, 1859).

    Google Scholar 

  2. 2

    Hairston, N. G. Jr, Ellner, S. P., Geber, M. A., Yoshida, T. & Fox, J. A. Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 8, 1114–1127 (2005).

    Article  Google Scholar 

  3. 3

    Thompson, J. N. Rapid evolution as an ecological process. Trends Ecol. Evol. 13, 329–332 (1998).

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Pelletier, F., Garant, D. & Hendry, A. P. Eco-evolutionary dynamics. Phil. Trans. R. Soc. Ser. B 364, 1483–1489 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F. & Hairston, N. G. Jr Rapid evolution drives ecological dynamics in a predator-prey system. Nature 424, 303–306 (2003).

    CAS  PubMed  Article  Google Scholar 

  6. 6

    Hiltunen, T., Ellner, S. P., Hooker, G., Jones, L. E. & Hairston, N. G. Jr Eco-evolutionary dynamics in a three-species food web with intraguild predation: intriguingly complex. Adv. Ecol. Res. 50, 41–73 (2014).

    Article  Google Scholar 

  7. 7

    Carroll, S. P., Hendry, A. P., Reznick, D. N. & Fox, C. W. Evolution on ecological time-scales. Func. Ecol. 21, 387–393 (2007).

    Article  Google Scholar 

  8. 8

    Johnson, M. T. J. & Stinchcombe, J. R. An emerging synthesis between community ecology and evolutionary biology. Trends Ecol. Evol. 22, 250–257 (2007).

    PubMed  Article  Google Scholar 

  9. 9

    Matthews, B. et al. Toward an integration of evolutionary biology and ecosystem science. Ecol. Lett. 14, 690–701 (2011).

    PubMed  Article  Google Scholar 

  10. 10

    Whitham, T. G. et al. Community and ecosystem genetics: a consequence of the extended phenotype. Ecology 84, 559–573 (2003).

    Article  Google Scholar 

  11. 11

    Ellner, S. P., Geber, M. A. & Hairston, N. G. Jr Does rapid evolution matter? Measuring the rate of contemporary evolution and its impacts on ecological dynamics. Ecol. Lett. 14, 603–614 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  12. 12

    Fussmann, G. F., Loreau, M. & Abrams, P. A. Eco-evolutionary dynamics of communities and ecosystems. Func. Ecol. 21, 465–477 (2007).

    Article  Google Scholar 

  13. 13

    Post, D. M. & Palkovacs, E. P. Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Phil. Trans. R. Soc. Ser. B 364, 1629–1640 (2009).

    Article  Google Scholar 

  14. 14

    Hendry, A. Key questions in the genetics and genomics of eco-evolutionary dynamics. Heredity 111, 456–466 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Rosenberg, E., Koren, O., Reshef, L., Efrony, R. & Zilber-Rosenberg, I. The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 5, 355–362 (2007).

    CAS  PubMed  Article  Google Scholar 

  17. 17

    Carroll, S. P. et al. Applying evolutionary biology to address global challenges. Science 346, 1245993 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. 18

    Tack, A. J. & Laine, A.-L. Spatial eco-evolutionary feedback in plant-pathogen interactions. Euro. J. Plant Pathol. 138, 667–677 (2014).

    Article  Google Scholar 

  19. 19

    Johnson, P. T., De Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology. Science 349, 1259504 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. 20

    Ellner, S. P. Rapid evolution: from genes to communities, and back again?. Func. Ecol. 27, 1087–1099 (2013).

    Article  Google Scholar 

  21. 21

    Urban, M. C. et al. The evolutionary ecology of metacommunities. Trends Ecol. Evol. 23, 311–317 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  22. 22

    Urban, M. C. & Skelly, D. K. Evolving metacommunities: Toward an evolutionary perspective on metacommunities. Ecology 87, 1616–1626 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  23. 23

    Holyoak, M., Leibold, M. A. & Holt, R. D. Metacommunities: Spatial Dynamics and Ecological Communities. (Univ. Chicago Press, 2005).

    Google Scholar 

  24. 24

    Leibold, M. A. et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).

    Article  Google Scholar 

  25. 25

    Logue, J. B., Mouquet, N., Peter, H., Hillebrand, H. & Group, M. W. Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol. Evol. 26, 482–491 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  26. 26

    Thompson, J. N. The Coevolutionary Process (Univ. Chicago Press, 1994).

    Google Scholar 

  27. 27

    Thompson, J. N. The Geographic Mosaic of Coevolution (Univ. Chicago Press, 2005).

    Google Scholar 

  28. 28

    Benkman, C. W., Parchman, T. L. & Mezquida, E. T. Patterns of coevolution in the adaptive radiation of crossbills. Ann. New York Acad. Sci. 1206, 1–16 (2010).

    Article  Google Scholar 

  29. 29

    Thompson, J. N. & Cunningham, B. M. Geographic structure and dynamics of coevolutionary selection. Nature 417, 735–738 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30

    Venail, P. et al. Diversity and productivity peak at intermediate dispersal rate in evolving metacommunities. Nature 452, 210–214 (2008).

    CAS  PubMed  Article  Google Scholar 

  31. 31

    Elton, C. S. Animal Ecology (Univ. Chicago Press, 1927).

    Google Scholar 

  32. 32

    Paine, R. T. Food web complexity and species diversity. Amer. Nat. 100, 65–75 (1966).

    Article  Google Scholar 

  33. 33

    Thompson, J. N. Relentless Evolution (Univ. Chicago Press, 2013).

    Google Scholar 

  34. 34

    Janzen, D. H. When is it coevolution?. Evolution 34, 611–612 (1980).

    PubMed  Article  Google Scholar 

  35. 35

    Whitham, T. G. et al. A framework for community and ecosystem genetics: from genes to ecosystems. Nat. Rev. Genetics 7, 510–523 (2006).

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Albert, R., Jeong, H. & Barabási, A. L. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant-animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Newman, M. E. J. Networks: an Introduction. (Oxford Univ. Press, 2010).

    Google Scholar 

  39. 39

    Jordano, P., Bascompte, J. & Olesen, J. M. Invariant properties in coevolutionary networks of plant-animal interactions. Ecol. Lett. 6, 69–81 (2003).

    Article  Google Scholar 

  40. 40

    Montoya, J. M., Pimm, S. L. & Solé, R. V. Ecological networks and their fragility. Nature 442, 259–264 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).

    PubMed  Article  CAS  Google Scholar 

  43. 43

    Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104, 19891–19896 (2007).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Guimarães, P. R. Jr, Jordano, P. & Thompson, J. N. Evolution and coevolution in mutualistic networks. Ecol. Lett. 14, 877–885 (2011).

    PubMed  Article  Google Scholar 

  45. 45

    Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442, 265–269 (2006).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Gouhier, T. C., Guichard, F. & Gonzalez, A. Synchrony and stability of food webs in metacommunities. Am. Nat. 175, E16–E34 (2010).

    PubMed  Article  Google Scholar 

  47. 47

    King, K. C., Delph, L. F., Jokela, J. & Lively, C. M. The geographic mosaic of sex and the Red Queen. Curr. Biol. 19, 1438–1441 (2009).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Thrall, P. H. & Burdon, J. J. Evolution of virulence in a plant host-pathogen metapopulation. Science 299, 1735–1737 (2003).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Vogwill, T., Fenton, A., Buckling, A., Hochberg, M. E. & Brockhurst, M. A. Source populations act as coevolutionary pacemakers in experimental selection mosaics containing hotspots and coldspots. Am. Nat. 173, E171–E176 (2009).

    PubMed  Article  Google Scholar 

  50. 50

    Thrall, P. & Burdon, J. Evolution of gene-for-gene systems in metapopulations: the effect of spatial scale of host and pathogen dispersal. Plant Pathol. 51, 169–184 (2002).

    Article  Google Scholar 

  51. 51

    Hata, H. et al. Diet disparity among sympatric herbivorous cichlids in the same ecomorphs in Lake Tanganyika: amplicon pyrosequences on algal farms and stomach contents. BMC Biol. 12, 90 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52

    Toju, H., Guimarães, P. R. Jr, Olesen, J. M. & Thompson, J. N. Assembly of complex plant–fungus networks. Nat. Commun. 5, 5273 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53

    Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comp. Biol. 11, e1004226 (2015).

    Article  CAS  Google Scholar 

  54. 54

    Toju, H., Yamamoto, S., Tanabe, A. S., Hayakawa, T. & Ishii, H. S. Network modules and hubs in plant-root fungal biomes. J. R. Soc. Int. 13, 20151097 (2016).

    Article  Google Scholar 

  55. 55

    Deagle, B. E., Kirkwood, R. & Jarman, S. N. Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Mol. Ecol. 18, 2022–2038 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56

    Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57

    Nuismer, S. L., Jordano, P. & Bascompte, J. Coevolution and the architecture of mutualistic networks. Evolution 67, 338–354 (2013).

    PubMed  Article  Google Scholar 

  58. 58

    Chase, J. M. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328, 1388–1391 (2010).

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Ann. Rev. Ecol. Syst. 33, 475–505 (2002).

    Article  Google Scholar 

  60. 60

    Leibold, M. A., Economo, E. P. & Peres-Neto, P. Metacommunity phylogenetics: separating the roles of environmental filters and historical biogeography. Ecol. Lett. 13, 1290–1299 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  61. 61

    Poisot, T., Canard, E., Mouillot, D., Mouquet, N. & Gravel, D. The dissimilarity of species interaction networks. Ecol. Lett. 15, 1353–1361 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  62. 62

    Bascompte, J., Melián, C. J. & Sala, E. Interaction strength combinations and the overfishing of a marine food web. Proc. Natl Acad. Sci. USA 102, 5443–5447 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63

    Toju, H. & Sota, T. Imbalance of predator and prey armament: geographic clines in phenotypic interface and natural selection. Am. Nat. 167, 105–117 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  64. 64

    Laine, A.-L., Burdon, J. J., Nemri, A. & Thrall, P. H. Host ecotype generates evolutionary and epidemiological divergence across a pathogen metapopulation. Proc. R. Soc. Ser. B 281, 20140522 (2014).

    Article  Google Scholar 

  65. 65

    Brockhurst, M. A., Morgan, A. D., Rainey, P. B. & Buckling, A. Population mixing accelerates coevolution. Ecol. Lett. 6, 975–979 (2003).

    Article  Google Scholar 

  66. 66

    Lenormand, T. Gene flow and the limits to natural selection. Trends Ecol. Evol. 17, 183–189 (2002).

    Article  Google Scholar 

  67. 67

    Kiers, T. E., Palmer, T. M., Ives, A. R., Bruno, J. F. & Bronstein, J. L. Mutualisms in a changing world: an evolutionary perspective. Ecol. Lett. 13, 1459–1474 (2010).

    Article  Google Scholar 

  68. 68

    Gandon, S. Local adaptation and the geometry of host–parasite coevolution. Ecol. Lett. 5, 246–256 (2002).

    Article  Google Scholar 

  69. 69

    Burdon, J. J. & Thrall, P. H. Coevolution of plants and their pathogens in natural habitats. Science 324, 755–756 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70

    Laine, A. L., Burdon, J. J., Dodds, P. N. & Thrall, P. H. Spatial variation in disease resistance: from molecules to metapopulations. J. Ecol. 99, 96–112 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  71. 71

    Jousimo, J. et al. Ecological and evolutionary effects of fragmentation on infectious disease dynamics. Science 344, 1289–1293 (2014).

    CAS  PubMed  Article  Google Scholar 

  72. 72

    McCann, K. S., Rasmussen, J. B. & Umbanhowar, J. The dynamics of spatially coupled food webs. Ecol. Lett. 8, 513–523 (2005).

    CAS  PubMed  Article  Google Scholar 

  73. 73

    Holt, R. D. Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol. 12, 197–229 (1977).

    CAS  PubMed  Article  Google Scholar 

  74. 74

    Ushio, M. et al. Microbial communities on flower surfaces act as signatures of pollinator visitation. Sci. Rep. 5, 8695 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75

    Toju, H. High-throughput DNA barcoding for ecological network studies. Popul. Ecol. 57, 37–51 (2015).

    Article  Google Scholar 

  76. 76

    Clare, E. L. Molecular detection of trophic interactions: emerging trends, distinct advantages, significant considerations and conservation applications. Ecol. Appl. 7, 1144–1157 (2014).

    Google Scholar 

  77. 77

    Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78

    Hanski, I. Metapopulation dynamics. Nature 396, 41–49 (1998).

    CAS  Article  Google Scholar 

  79. 79

    Ellison, A. M. et al. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front. Ecol. Env. 3, 479–486 (2005).

    Article  Google Scholar 

  80. 80

    Garcia, K., Delaux, P. M., Cope, K. R. & Ané, J. M. Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses. New Phytol. 208, 79–87 (2015).

    PubMed  Article  Google Scholar 

  81. 81

    Deyle, E. R., May, R. M., Munch, S. B. & Sugihara, G. Tracking and forecasting ecosystem interactions in real time. Proc. R. Soc. Ser. B 283, 20152258 (2016).

    Article  Google Scholar 

  82. 82

    Ives, A., Dennis, B., Cottingham, K. & Carpenter, S. Estimating community stability and ecological interactions from time-series data. Ecol. Monogr. 73, 301–330 (2003).

    Article  Google Scholar 

  83. 83

    Sugihara, G. et al. Detecting causality in complex ecosystems. Science 338, 496–500 (2012).

    CAS  PubMed  Article  Google Scholar 

  84. 84

    Vicente, R., Wibral, M., Lindner, M. & Pipa, G. Transfer entropy – a model-free measure of effective connectivity for the neurosciences. J. Comput. Neurosci. 30, 45–67 (2011).

    PubMed  Article  Google Scholar 

  85. 85

    Yeh, Y. C. et al. Determinism of bacterial metacommunity dynamics in the southern East China Sea varies depending on hydrography. Ecography 38, 198–212 (2015).

    Article  Google Scholar 

  86. 86

    Smets, W. et al. A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing. Soil Biol. Biochem. 96, 145–151 (2016).

    CAS  Article  Google Scholar 

  87. 87

    Nagano, A. J. et al. Deciphering and prediction of transcriptome dynamics under fluctuating field conditions. Cell 151, 1358–1369 (2012).

    CAS  PubMed  Article  Google Scholar 

  88. 88

    Barrett, L. G., Encinas-Viso, F., Burdon, J. J. & Thrall, P. H. Specialization for resistance in wild host-pathogen interaction networks. Front. Plant Sci. 6, 761 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  89. 89

    Olesen, J. M., Bascompte, J., Elberling, H. & Jordano, P. Temporal dynamics in a pollination network. Ecology 89, 1573–1582 (2008).

    PubMed  Article  Google Scholar 

  90. 90

    Rosvall, M. & Bergstrom, C. T. Mapping change in large networks. PLoS ONE 5, e8694 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  91. 91

    Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92

    Huisman, J. & Weissing, F. J. Biodiversity of plankton by species oscillations and chaos. Nature 402, 407–410 (1999).

    Article  Google Scholar 

  93. 93

    Hutchinson, G. E. The paradox of the plankton. Am. Nat. 95, 137–145 (1961).

    Article  Google Scholar 

  94. 94

    Tsai, C.-H. et al. Phytoplankton functional group dynamics explain species abundance distribution in a directionally changing environment. Ecology 95, 3335–3343 (2014).

    Article  Google Scholar 

  95. 95

    Toju, H., Guimarães, P. R. Jr, Olesen, J. M. & Thompson, J. N. Below-ground plant–fungus network topology is not congruent with above-ground plant–animal network topology. Sci. Adv. 1, e1500291 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  96. 96

    Mouquet, N., Gravel, D., Massol, F. & Calcagno, V. Extending the concept of keystone species to communities and ecosystems. Ecol. Lett. 16, 1–8 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  97. 97

    Economo, E. P. & Keitt, T. H. Species diversity in neutral metacommunities: a network approach. Ecol. Lett. 11, 52–62 (2008).

    PubMed  PubMed Central  Google Scholar 

  98. 98

    Fortuna, M. A., Albaladejo, R. G., Fernández, L., Aparicio, A. & Bascompte, J. Networks of spatial genetic variation across species. Proc. Natl Acad. Sci. USA 106, 19044–19049 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99

    Warton, D. I. et al. So many variables: joint modeling in community ecology. Trends Ecol. Evol. 30, 766–779 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  100. 100

    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank N. G. Hairston Jr, H. Hillebrand, T. Fukami, E. A. Mordecai, K. G. Peay, A. D. Letten, P.-J. Ke, M. Ushio, S. B. Munch, F. Maruyama, S. Fukuda and S. Sakaguchi for their insightful comments that improved the manuscript. This work was financially supported by JSPS KAKENHI Grant (26711026), JST PRESTO (11118), and the Funding Program for Next Generation World-Leading Researchers of Cabinet Office, the Government of Japan (GS014) to H.T. M.Y. was supported by JSPS KAKENHI Grant (16K18618), P.R.G. by FAPESP (2009/54422-8) and CNPq, J.M.O. by the Danish Science Research Council (1323-00278), A.M. by JSPS KAKENHI Grant (25840164), T.Y. by JSPS KAKENHI Grant (26291088) and J.N.T. by NSF (DEB-1048333).

Author information

Affiliations

Authors

Contributions

H.T. designed the study and wrote the first draft based on discussion with M.Y. and J.N.T.; M.Y. and T.Y. made significant inputs from the perspective of eco-evolutionary feedbacks and added some paragraphs to the first draft. H.T., P.R.G., J.M.O. and J.N.T. revised the manuscript from the aspects of coevolutionary biology and ecological interaction networks based on discussion with all authors. A.M. added essential insights into the conceptual backgrounds of theoretical community ecology. All authors contributed to the final version of the manuscript.

Corresponding author

Correspondence to Hirokazu Toju.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary References (PDF 310 kb)

Supplementary Data 1

Network data used in the latent variable model analysis of human gut microbiome data. (XLSX 78 kb)

Supplementary Data 2

Network data used in the analysis of the local plant-fungus networks. (XLSX 191 kb)

Supplementary Data 3

Internal transcribed spacer sequences of the fungi analyzed in the analysis of local plant-fungus networks. (TXT 350 kb)

Supplementary Data 4

Network data used in the analysis of the metacommunity-level plant-fungus network. (XLSX 2225 kb)

Supplementary Data 5

Internal transcribed spacer sequences of the fungi that appeared in multiple local communities. (TXT 56 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Toju, H., Yamamichi, M., Guimarães, P. et al. Species-rich networks and eco-evolutionary synthesis at the metacommunity level. Nat Ecol Evol 1, 0024 (2017). https://doi.org/10.1038/s41559-016-0024

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing