Identifying species threat hotspots from global supply chains


Identifying hotspots of species threat has been a successful approach for setting conservation priorities. One important challenge in conservation is that, in many hotspots, export industries continue to drive overexploitation. Conservation measures must consider not just the point of impact, but also the consumer demand that ultimately drives resource use. To understand which species threat hotspots are driven by which consumers, we have developed a new approach to link a set of biodiversity footprint accounts to the hotspots of threatened species on the IUCN Red List of Threatened Species. The result is a map connecting consumption to spatially explicit hotspots driven by production on a global scale. Locating biodiversity threat hotspots driven by consumption of goods and services can help to connect conservationists, consumers, companies and governments in order to better target conservation actions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Global hotspots of species threat linked to consumption in the United States.
Figure 2: Selected enlargements of threat hotspots.
Figure 3: Decomposition of threat hotspots linked to consumption in the United States by threat cause.
Figure 4


  1. 1

    Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Essl, F., Winter, M. & Pysek, P. Biodiversity: Trade threat could be even more dire. Nature 487, 39 (2012).

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Chaplin-Kramer, R. et al. Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage. Proc. Natl Acad. Sci. USA 112, 7402–7407 (2015).

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Bateman, I. J. et al. Conserving tropical biodiversity via market forces and spatial targeting. Proc. Natl Acad. Sci. USA 112, 7408–7413 (2015).

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, 8221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Hortal, J., Lobo, J. M. & Jiménez-Valverde, A. Limitations of biodiversity databases: case study on seed-plant diversity in Tenerife, Canary Islands. Conserv. Biol. 21, 853–863 (2007).

    Article  PubMed  Google Scholar 

  7. 7

    Myers, N., Mittermeler, R. A., Mittermeler, C. G., Da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Gaston, K. J. & Fuller, R. A. The sizes of species’ geographic ranges. J. Appl. Ecol. 46, 1–9 (2009).

    Article  Google Scholar 

  9. 9

    Dobson, A. P., Rodriguez, J. P., Roberts, W. M. & Wilcove, D. S. Geographic distribution of endangered species in the United States. Science 275, 550–553 (1997).

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Ficetola, G. F. et al. An evaluation of the robustness of global amphibian range maps. J. Biogeogr. 41, 211–221 (2014).

    Article  Google Scholar 

  11. 11

    Jetz, W., Sekercioglu, C. H. & Watson, J. E. M. Ecological correlates and conservation implications of overestimating species geographic ranges. [Correlaciones Ecológicas e Implicaciones para la Conservación de la Sobrestimación de los Rangos Geográficos de Especies.] Conserv. Biol. 22, 110–119 (2008).

    Article  PubMed  Google Scholar 

  12. 12

    Williams, R. et al. Prioritizing global marine mammal habitats using density maps in place of range maps. Ecography 37, 212–220 (2014).

    Article  Google Scholar 

  13. 13

    Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA 104, 13384–13389 (2007).

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Joppa, L. N. et al. Impact of alternative metrics on estimates of extent of occurrence for extinction risk assessment. Conserv. Biol. (2015).

  15. 15

    Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Orme, C. D. L. et al. Global hotspots of species richness are not congruent with endemism or threat. Nature 436, 1016–1019 (2005).

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Kaschner, K., Tittensor, D. P., Ready, J., Gerrodette, T. & Worm, B. Current and future patterns of global marine mammal biodiversity. PLoS ONE 6, e19653 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Kesner-Reyes, K. et al. AquaMaps: Algorithm and Data Sources for Aquatic Organisms (eds Froese, R. & Pauly, D.) (2012).

  19. 19

    Schipper, J. et al. The status of the world’s land and marine mammals: Diversity, threat, and knowledge. Science 322, 225–230 (2008).

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Grenyer, R. et al. Global distribution and conservation of rare and threatened vertebrates. Nature 444, 93–96 (2006).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Chaudhary, A., Pfister, S. & Hellweg, S. Spatially explicit analysis of biodiversity loss due to global agriculture, pasture and forest land use from a producer and consumer perspective. Environ. Sci. Technol. 50, 3928–3936 (2016).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Kitzes, J. et al. Consumption-based conservation targeting: linking biodiversity loss to upstream demand through a global wildlife footprint. Conserv. Lett. (2016).

  23. 23

    Moran, D. & Wood, R. Convergence between the Eora, WIOD, EXIOBASE, and OpenEU’s consumption-based carbon accounts. Econ. Syst. Res. 26, 245–261 (2014).

    Article  Google Scholar 

  24. 24

    Godar, J., Persson, U. M., Tizado, E. J. & Meyfroidt, P. Towards more accurate and policy relevant footprint analyses: Tracing fine-scale socio-environmental impacts of production to consumption. Ecol. Econ. 112, 25–35 (2015).

    Article  Google Scholar 

  25. 25

    Lenzen, M. et al. Compiling and using input–output frameworks through collaborative virtual laboratories. Sci. Total Environ. 485–486, 241–251 (2014).

    Article  PubMed  Google Scholar 

  26. 26

    Bruckner, M., Fischer, G., Tramberend, S. & Giljum, S. Measuring telecouplings in the global land system: A review and comparative evaluation of land footprint accounting methods. Ecol. Econ. 114, 11–21 (2015).

    Article  Google Scholar 

  27. 27

    Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: The bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012).

    Article  Google Scholar 

  28. 28

    Hoekstra, A. Y. & Wiedmann, T. O. Humanity’s unsustainable environmental footprint. Science 344, 1114–1117 (2014).

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Fisher, M. C. & Garner, T. W. J. The relationship between the emergence of Batrachochytrium dendrobatidis, the international trade in amphibians and introduced amphibian species. Fungal Biol. Rev. 21, 2–9 (2007).

    Article  Google Scholar 

  30. 30

    James, A. N., Gaston, K. J. & Balmford, A. Balancing the Earth’s accounts. Nature 401, 323–324 (1999).

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Jenkins, C. N., Van Houtan, K. S., Pimm, S. L. & Sexton, J. O. US protected lands mismatch biodiversity priorities. Proc. Natl Acad. Sci. USA 112, 5081–5086 (2015).

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Withey, J. C. et al. Maximising return on conservation investment in the conterminous USA. Ecol. Lett. 15, 1249–1256 (2012).

    Article  PubMed  Google Scholar 

  33. 33

    Brown, C. J. et al. Effective conservation requires clear objectives and prioritizing actions, not places or species. Proc. Natl Acad. Sci. USA 112, E4342 (2015).

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Barnes, M. Aichi targets: Protect biodiversity, not just area. Nature 526, 195 (2015).

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Fuller, R. A. et al. Replacing underperforming protected areas achieves better conservation outcomes. Nature 466, 365–367 (2010).

    CAS  Article  PubMed  Google Scholar 

  37. 37

    Game, E. T., Kareiva, P. & Possingham, H. P. Six common mistakes in conservation priority setting. Conserv. Biol. 27, 480–485 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    IUCN Red List v. 2015-3. (International Union for the Conservation of Nature, 2015);

  39. 39

    Bird species distribution maps of the world v. 5.0. (BirdLife International and NatureServe, Accessed August 2015);

  40. 40

    Lenzen, M., Kanemoto, K., Moran, D. & Geschke, A. Mapping the structure of the world economy. Environ. Sci. Technol. 46, 8374–8381 (2012).

    CAS  Article  PubMed  Google Scholar 

  41. 41

    Lenzen, M., Moran, D. D., Kanemoto, K. & Geschke, A. Building Eora: a global multi-region input–output database at high country and sector resolution. Econ. Syst. Res. 25, 20–49 (2013).

    Article  Google Scholar 

  42. 42

    Moran, D. & Kanemoto, K. Tracing global supply chains to air pollution hotspots. Environ. Res. Lett. 11, 94017 (2016).

    Article  Google Scholar 

  43. 43

    Kanemoto, K., Moran, D. & Hertwich, E. G. Mapping the carbon footprint of nations. Environ. Sci. Technol. 50, 10512–10517 (2016).

    CAS  Article  PubMed  Google Scholar 

  44. 44

    Kanemoto, K., Lenzen, M., Peters, G. P., Moran, D. D. & Geschke, A. Frameworks for comparing emissions associated with production, consumption, and international trade. Environ. Sci. Technol. 46, 172–179 (2012).

    CAS  Article  PubMed  Google Scholar 

  45. 45

    Bachmann, C., Roorda, M. J. & Kennedy, C. Developing a multi-scale multi-region input–output model. Econ. Syst. Res. 27, 172–193 (2014).

    Article  Google Scholar 

  46. 46

    Feng, K. et al. Outsourcing CO2 within China. Proc. Natl Acad. Sci. USA 110, 11654–11659 (2013).

    CAS  Article  PubMed  Google Scholar 

  47. 47

    Chaudhary, A., Burivalova, Z., Koh, L. P. & Hellweg, S. Impact of forest management on species richness: Global meta-analysis and economic trade-offs. Sci. Rep. 6, 23954 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48

    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 45–50 (2016).

    Article  Google Scholar 

  49. 49

    Gray, J. S. Marine biodiversity: Patterns, threats and conservation needs. Biodivers. Conserv. 6, 153–175 (1997).

    Article  Google Scholar 

Download references


This work was supported in part by the Japan Society for the Promotion of Science through its Grant-in-Aid for Young Scientists (A) 15H05341, the Norwegian Research Council grant #255483/E50, the PRINCE project of the Swedish Environment Agency and the Belmont Forum TSUNAGARI project. We thank A. Hart for comments that have improved the work.

Author information




K.K. designed the research. D.M. and K.K. conducted the analysis. D.M. prepared the figures. D.M. and K.K. wrote the paper. Both authors contributed equally to this work.

Corresponding author

Correspondence to Keiichiro Kanemoto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary information

Supplementary Figures 1–4 (PDF 1087 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moran, D., Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat Ecol Evol 1, 0023 (2017).

Download citation

Further reading