Abstract
Identifying hotspots of species threat has been a successful approach for setting conservation priorities. One important challenge in conservation is that, in many hotspots, export industries continue to drive overexploitation. Conservation measures must consider not just the point of impact, but also the consumer demand that ultimately drives resource use. To understand which species threat hotspots are driven by which consumers, we have developed a new approach to link a set of biodiversity footprint accounts to the hotspots of threatened species on the IUCN Red List of Threatened Species. The result is a map connecting consumption to spatially explicit hotspots driven by production on a global scale. Locating biodiversity threat hotspots driven by consumption of goods and services can help to connect conservationists, consumers, companies and governments in order to better target conservation actions.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).
Essl, F., Winter, M. & Pysek, P. Biodiversity: Trade threat could be even more dire. Nature 487, 39 (2012).
Chaplin-Kramer, R. et al. Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage. Proc. Natl Acad. Sci. USA 112, 7402–7407 (2015).
Bateman, I. J. et al. Conserving tropical biodiversity via market forces and spatial targeting. Proc. Natl Acad. Sci. USA 112, 7408–7413 (2015).
Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, 8221 (2015).
Hortal, J., Lobo, J. M. & Jiménez-Valverde, A. Limitations of biodiversity databases: case study on seed-plant diversity in Tenerife, Canary Islands. Conserv. Biol. 21, 853–863 (2007).
Myers, N., Mittermeler, R. A., Mittermeler, C. G., Da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
Gaston, K. J. & Fuller, R. A. The sizes of species’ geographic ranges. J. Appl. Ecol. 46, 1–9 (2009).
Dobson, A. P., Rodriguez, J. P., Roberts, W. M. & Wilcove, D. S. Geographic distribution of endangered species in the United States. Science 275, 550–553 (1997).
Ficetola, G. F. et al. An evaluation of the robustness of global amphibian range maps. J. Biogeogr. 41, 211–221 (2014).
Jetz, W., Sekercioglu, C. H. & Watson, J. E. M. Ecological correlates and conservation implications of overestimating species geographic ranges. [Correlaciones Ecológicas e Implicaciones para la Conservación de la Sobrestimación de los Rangos Geográficos de Especies.] Conserv. Biol. 22, 110–119 (2008).
Williams, R. et al. Prioritizing global marine mammal habitats using density maps in place of range maps. Ecography 37, 212–220 (2014).
Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA 104, 13384–13389 (2007).
Joppa, L. N. et al. Impact of alternative metrics on estimates of extent of occurrence for extinction risk assessment. Conserv. Biol. http://dx.doi.org/10.1111/cobi.12591 (2015).
Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).
Orme, C. D. L. et al. Global hotspots of species richness are not congruent with endemism or threat. Nature 436, 1016–1019 (2005).
Kaschner, K., Tittensor, D. P., Ready, J., Gerrodette, T. & Worm, B. Current and future patterns of global marine mammal biodiversity. PLoS ONE 6, e19653 (2011).
Kesner-Reyes, K. et al. AquaMaps: Algorithm and Data Sources for Aquatic Organisms (eds Froese, R. & Pauly, D.) (2012).
Schipper, J. et al. The status of the world’s land and marine mammals: Diversity, threat, and knowledge. Science 322, 225–230 (2008).
Grenyer, R. et al. Global distribution and conservation of rare and threatened vertebrates. Nature 444, 93–96 (2006).
Chaudhary, A., Pfister, S. & Hellweg, S. Spatially explicit analysis of biodiversity loss due to global agriculture, pasture and forest land use from a producer and consumer perspective. Environ. Sci. Technol. 50, 3928–3936 (2016).
Kitzes, J. et al. Consumption-based conservation targeting: linking biodiversity loss to upstream demand through a global wildlife footprint. Conserv. Lett. http://dx.doi.org/10.1111/con4.12321 (2016).
Moran, D. & Wood, R. Convergence between the Eora, WIOD, EXIOBASE, and OpenEU’s consumption-based carbon accounts. Econ. Syst. Res. 26, 245–261 (2014).
Godar, J., Persson, U. M., Tizado, E. J. & Meyfroidt, P. Towards more accurate and policy relevant footprint analyses: Tracing fine-scale socio-environmental impacts of production to consumption. Ecol. Econ. 112, 25–35 (2015).
Lenzen, M. et al. Compiling and using input–output frameworks through collaborative virtual laboratories. Sci. Total Environ. 485–486, 241–251 (2014).
Bruckner, M., Fischer, G., Tramberend, S. & Giljum, S. Measuring telecouplings in the global land system: A review and comparative evaluation of land footprint accounting methods. Ecol. Econ. 114, 11–21 (2015).
Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: The bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012).
Hoekstra, A. Y. & Wiedmann, T. O. Humanity’s unsustainable environmental footprint. Science 344, 1114–1117 (2014).
Fisher, M. C. & Garner, T. W. J. The relationship between the emergence of Batrachochytrium dendrobatidis, the international trade in amphibians and introduced amphibian species. Fungal Biol. Rev. 21, 2–9 (2007).
James, A. N., Gaston, K. J. & Balmford, A. Balancing the Earth’s accounts. Nature 401, 323–324 (1999).
Jenkins, C. N., Van Houtan, K. S., Pimm, S. L. & Sexton, J. O. US protected lands mismatch biodiversity priorities. Proc. Natl Acad. Sci. USA 112, 5081–5086 (2015).
Withey, J. C. et al. Maximising return on conservation investment in the conterminous USA. Ecol. Lett. 15, 1249–1256 (2012).
Brown, C. J. et al. Effective conservation requires clear objectives and prioritizing actions, not places or species. Proc. Natl Acad. Sci. USA 112, E4342 (2015).
Barnes, M. Aichi targets: Protect biodiversity, not just area. Nature 526, 195 (2015).
Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).
Fuller, R. A. et al. Replacing underperforming protected areas achieves better conservation outcomes. Nature 466, 365–367 (2010).
Game, E. T., Kareiva, P. & Possingham, H. P. Six common mistakes in conservation priority setting. Conserv. Biol. 27, 480–485 (2013).
IUCN Red List v. 2015-3. (International Union for the Conservation of Nature, 2015); www.iucnredlist.org
Bird species distribution maps of the world v. 5.0. (BirdLife International and NatureServe, Accessed August 2015); http://datazone.birdlife.org
Lenzen, M., Kanemoto, K., Moran, D. & Geschke, A. Mapping the structure of the world economy. Environ. Sci. Technol. 46, 8374–8381 (2012).
Lenzen, M., Moran, D. D., Kanemoto, K. & Geschke, A. Building Eora: a global multi-region input–output database at high country and sector resolution. Econ. Syst. Res. 25, 20–49 (2013).
Moran, D. & Kanemoto, K. Tracing global supply chains to air pollution hotspots. Environ. Res. Lett. 11, 94017 (2016).
Kanemoto, K., Moran, D. & Hertwich, E. G. Mapping the carbon footprint of nations. Environ. Sci. Technol. 50, 10512–10517 (2016).
Kanemoto, K., Lenzen, M., Peters, G. P., Moran, D. D. & Geschke, A. Frameworks for comparing emissions associated with production, consumption, and international trade. Environ. Sci. Technol. 46, 172–179 (2012).
Bachmann, C., Roorda, M. J. & Kennedy, C. Developing a multi-scale multi-region input–output model. Econ. Syst. Res. 27, 172–193 (2014).
Feng, K. et al. Outsourcing CO2 within China. Proc. Natl Acad. Sci. USA 110, 11654–11659 (2013).
Chaudhary, A., Burivalova, Z., Koh, L. P. & Hellweg, S. Impact of forest management on species richness: Global meta-analysis and economic trade-offs. Sci. Rep. 6, 23954 (2016).
Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 45–50 (2016).
Gray, J. S. Marine biodiversity: Patterns, threats and conservation needs. Biodivers. Conserv. 6, 153–175 (1997).
Acknowledgements
This work was supported in part by the Japan Society for the Promotion of Science through its Grant-in-Aid for Young Scientists (A) 15H05341, the Norwegian Research Council grant #255483/E50, the PRINCE project of the Swedish Environment Agency and the Belmont Forum TSUNAGARI project. We thank A. Hart for comments that have improved the work.
Author information
Authors and Affiliations
Contributions
K.K. designed the research. D.M. and K.K. conducted the analysis. D.M. prepared the figures. D.M. and K.K. wrote the paper. Both authors contributed equally to this work.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Supplementary information
Supplementary information
Supplementary Figures 1–4 (PDF 1087 kb)
Rights and permissions
About this article
Cite this article
Moran, D., Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat Ecol Evol 1, 0023 (2017). https://doi.org/10.1038/s41559-016-0023
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41559-016-0023
This article is cited by
-
Impacts of the global food system on terrestrial biodiversity from land use and climate change
Nature Communications (2024)
-
Mapping pressures on biodiversity: the contribution of thematic detail to decision making
Biodiversity and Conservation (2024)
-
Inter-industry linkages, air pollution and human health in the European Union towards 2030
Environment, Development and Sustainability (2024)
-
Spatial exploration of rural capital contributing to quality of life and urban-to-rural migration decisions: a case study of Hokuto City, Japan
Sustainability Science (2024)
-
Freshwater species diversity loss embodied in interprovincial hydroelectricity transmission with ecological network analysis
Environmental Science and Pollution Research (2023)