Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Exceptionally preserved Cambrian loriciferans and the early animal invasion of the meiobenthos



Microscopic animals that live among and between sediment grains (meiobenthic metazoans) are key constituents of modern aquatic ecosystems, but are effectively absent from the fossil record. We describe an assemblage of microscopic fossil loriciferans (Ecdysozoa, Loricifera) from the late Cambrian Deadwood Formation of western Canada. The fossils share a characteristic head structure and minute adult body size (~300 μm) with modern loriciferans, indicating the early evolution and subsequent conservation of an obligate, permanently meiobenthic lifestyle. The unsuspected fossilization potential of such small animals in marine mudstones offers a new search image for the earliest ecdysozoans and other animals, although the anatomical complexity of loriciferans points to their evolutionary miniaturization from a larger-bodied ancestor. The invasion of animals into ecospace that was previously monopolized by protists will have contributed considerably to the revolutionary geobiological feedbacks of the Proterozoic/Phanerozoic transition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: E. deadwoodensis, a fossil loriciferan from the upper Cambrian Deadwood Formation of Canada.
Figure 2: Comparison between E. deadwoodensis from the upper Cambrian Deadwood Formation and a modern pliciloricid loriciferan.


  1. 1

    Giere, O. Meiobenthology—The Microscopic Motile Fauna of Aquatic Sediments (Springer, 2009).

    Google Scholar 

  2. 2

    Laumer, C. E. et al. Spiralian phylogeny informs the evolution of microscopic lineages. Curr. Biol. 25, 2000–2006 (2015).

    CAS  Article  Google Scholar 

  3. 3

    Struck, T. H. et al. The evolution of annelids reveals two adaptive routes to the interstitial realm. Curr. Biol. 25, 1993–1999 (2015).

    CAS  Article  Google Scholar 

  4. 4

    Erwin, D. H. et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334, 1091–1097 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Rota-Stabelli, O., Daley, A. C. & Pisani, D. Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr. Biol. 23, 392–398 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Fortey, R. A., Briggs, D. E. G. & Wills, M. A. The Cambrian evolutionary ‘explosion’: decoupling cladogenesis from morphological disparity. Biol. J. Linn. Soc. 57, 13–33 (1996).

    Google Scholar 

  7. 7

    Butterfield, N. J. & Harvey, T. H. P. Small carbonaceous fossils (SCFs): a new measure of early Paleozoic paleobiology. Geology 40, 71–74 (2012).

    Article  Google Scholar 

  8. 8

    Kristensen, R. M. Loricifera, a new phylum with Aschelminthes characters from the meiobenthos. Z. Zool. Syst. Evol. 21, 163–180 (1983).

    Article  Google Scholar 

  9. 9

    Neves, R. C., Reichert, H., Sørensen, M. V. & Kristensen, R. M. Systematics of phylum Loricifera: identification keys of families, genera and species. Zool. Anz. 265, 141–170 (2016).

  10. 10

    Gad, G. Giant Higgins-larvae with paedogenetic reproduction from the deep sea of the Angola Basin—evidence for a new life cycle and for abyssal gigantism in Loricifera? Org. Divers. Evol. 5, 59–75 (2005).

    Article  Google Scholar 

  11. 11

    Wills, M. A., Gerber, S., Ruta, M. & Hughes, M. The disparity of priapulid, archaeopriapulid and palaeoscolecid worms in the light of new data. J. Evol. Biol. 25, 2056–2076 (2012).

    CAS  Article  Google Scholar 

  12. 12

    Hejnol, A. & Lowe, C. J. Embracing the comparative approach: how robust phylogenies and broader developmental sampling impacts the understanding of nervous system evolution. Phil. Trans. R. Soc. B 370, 20150045 (2015).

    Article  Google Scholar 

  13. 13

    Schmidt-Rhaesa, A. in Handbook of Zoology: Nematomorpha, Priapulida, Kinorhyncha, Loricifera Vol. 1 (ed. Schmidt-Rhaesa, A. ) 147–180 (De Gruyter, 2013).

    Google Scholar 

  14. 14

    Sørensen, M. V. et al. New data from an enigmatic phylum: evidence from molecular sequence data supports a sister-group relationship between Loricifera and Nematomorpha. J. Zool. Syst. Evol. Res. 46, 231–239 (2008).

    Article  Google Scholar 

  15. 15

    Yamasaki, H., Fujimoto, S. & Miyazaki, K. Phylogenetic position of Loricifera inferred from nearly complete 18S and 28S rRNA gene sequences. Zool. Lett. 1, 1–9 (2015).

    Article  Google Scholar 

  16. 16

    Park, J. K., Rho, H. S., Kristensen, R. M., Kim, W. & Giribet, G. First molecular data on the phylum Loricifera: an investigation into the phylogeny of Ecdysozoa with emphasis on the positions of Loricifera and Priapulida. Zool. Sci. 23, 943–954 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Peel, J. S., Stein, M. & Kristensen, R. M. Life cycle and morphology of a Cambrian stem-lineage loriciferan. PLoS ONE 8, e73583 (2013).

    CAS  Article  Google Scholar 

  18. 18

    Huang, D., Chen, J. & Vannier, J. Discussion on the systematic position of the Early Cambrian priapulomorph worms. Chinese Sci. Bull. 51, 243–249 (2006).

    Article  Google Scholar 

  19. 19

    Maas, A., Huang, D., Chen, J., Waloszek, D. & Braun, A. Maotianshan-Shale nemathelminthes—morphology, biology, and the phylogeny of Nemathelminthes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 254, 288–306 (2007).

    Article  Google Scholar 

  20. 20

    Maas, A., Waloszek, D., Haug, J. T. & Mìller, K. J. Loricate larvae (Scalidophora) from the Middle Cambrian of Australia. Mem. Assoc. Aust. Palaeont. 37, 281–302 (2009).

    Google Scholar 

  21. 21

    Kirsteuer, E. Notes on adult morphology and larval development of Tubiluchus corallicola (Priapulida), based on in vivo and scanning electron microscope examinations of specimens from Bermuda. Zool. Scr. 5, 239–255 (1976).

    Article  Google Scholar 

  22. 22

    Warwick, R. M. Are loriciferans paedomorphic (progenetic) priapulids? Vie Milieu 50, 191–193 (2000).

    Google Scholar 

  23. 23

    Hanken, J. & Wake, D. B. Miniaturization of body size: organismal consequences and evolutionary significance. Annu. Rev. Ecol. Syst. 24, 501–519 (1993).

    Article  Google Scholar 

  24. 24

    Neves, R. C. et al. A complete three-dimensional reconstruction of the myoanatomy of Loricifera: comparative morphology of an adult and a Higgins larva stage. Front. Zool. 10, 19 (2013).

    Article  Google Scholar 

  25. 25

    Rundell, R. J. & Leander, B. S. Masters of miniaturization: convergent evolution among interstitial eukaryotes. Bioessays 32, 430–437 (2010).

    Article  Google Scholar 

  26. 26

    Budd, G. E. & Jensen, S. A critical reappraisal of the fossil record of the bilaterian phyla. Biol. Rev. 75, 253–295 (2000).

    CAS  Article  Google Scholar 

  27. 27

    Webster, B. L. et al. Mitogenomics and phylogenomics reveal priapulid worms as extant models of the ancestral Ecdysozoan. Evol. Dev. 8, 502–510 (2006).

    Article  Google Scholar 

  28. 28

    Smith, M. R., Harvey, T. H. P. & Butterfield, N. J. The macro- and microfossil record of the Cambrian priapulid Ottoia . Palaeontology 58, 705–721 (2015).

    Article  Google Scholar 

  29. 29

    Warwick, R. M. Meiobenthos and macrobenthos are discrete entities and not artefacts of sampling a size continuum: comment on Bett (2013). Mar. Ecol. Prog. Ser. 505, 295–298 (2014).

    Article  Google Scholar 

  30. 30

    Mìller, K. J., Walossek, D. & Zakharov, A. ‘Orsten’ type phosphatized soft-integument preservation and a new record from the Middle Cambrian Kuonamka Formation in Siberia. Neues Jb. Geol. Palaeontol. Abh. 197, 101–118 (1995).

    Article  Google Scholar 

  31. 31

    Walossek, D. & Mìller, K. J. in Arthropod Fossils and Phylogeny (ed. Edgecombe, G. D. ) 185–231 (Columbia Univ. Press, 1998).

    Google Scholar 

  32. 32

    Dong, X.-P., Donoghue, P. C. J., Cheng, H. & Liu, J.-B. Fossil embryos from the Middle and Late Cambrian period of Hunan, south China. Nature 427, 237–240 (2004).

    CAS  Article  Google Scholar 

  33. 33

    Zhang, H. et al. Armored kinorhynch-like scalidophoran animals from the Early Cambrian. Sci. Rep. 5, 16521 (2015).

    CAS  Article  Google Scholar 

  34. 34

    Dong, X.-P. et al. Developmental biology of the Early Cambrian cnidarian Olivooides . Palaeontology 59, 387–407 (2016).

    Article  Google Scholar 

  35. 35

    Cullen, D. J. Bioturbation of superficial marine sediments by interstitial meiobenthos. Nature 242, 323–324 (1973).

    Article  Google Scholar 

  36. 36

    Gerlach, S. A. Food-chain relationships in subtidal silty sand marine sediments and the role of meiofauna in stimulating bacterial productivity. Oecologia 33, 55–69 (1978).

    Article  Google Scholar 

  37. 37

    Aller, R. C. & Aller, J. Y. Meiofauna and solute transport in marine muds. Limnol. Oceanogr. 37, 1018–1033 (1992).

    CAS  Article  Google Scholar 

  38. 38

    Coull, B. C. Role of meiofauna in estuarine soft-bottom habitats. Aust. J. Ecol. 24, 327–343 (1999).

    Article  Google Scholar 

  39. 39

    Pike, J., Bernhard, J. M., Moreton, S. G. & Butler, I. B. Microbioirrigation of marine sediments in dysoxic environments: implications for early sediment fabric formation and diagenetic processes. Geology 29, 923–926 (2001).

    Article  Google Scholar 

  40. 40

    Porter, S. M. Tiny vampires in ancient seas: evidence for predation via perforation in fossils from the 780–740 million-year-old Chuar Group, Grand Canyon, USA. Proc. R. Soc. B 283, 20160221 (2016).

    Article  Google Scholar 

  41. 41

    Smith, F. A. et al. Body size evolution across the Geozoic. Annu. Rev. Earth Planet. Sci. 44, 523–553 (2016).

    CAS  Article  Google Scholar 

  42. 42

    Brown, J. H., Marquet, P. A. & Taper, M. L. Evolution of body size: consequences of an energetic definition of fitness. Am. Nat. 142, 573–584 (1993).

    CAS  Article  Google Scholar 

  43. 43

    Mángano, M. G. & Buatois, L. A. Decoupling of body-plan diversification and ecological structuring during the Ediacaran–Cambrian transition: evolutionary and geobiological feedbacks. Proc. R. Soc. B 281, 20140038 (2014).

    Article  Google Scholar 

  44. 44

    Tarhan, L. G., Planavsky, N. J., Laumer, C. E., Stolz, J. F. & Reid, R. P. Microbial mat controls on infaunal abundance and diversity in modern marine microbialites. Geobiology 11, 485–497 (2013).

    CAS  Article  Google Scholar 

  45. 45

    Danovaro, R. et al. The challenge of proving the existence of metazoan life in permanently anoxic deep-sea sediments. BMC Biol. 14, 43 (2016).

    Article  Google Scholar 

  46. 46

    Pawlowska, M. M., Butterfield, N. J. & Brocks, J. J. Lipid taphonomy in the Proterozoic and the effect of microbial mats on biomarker preservation. Geology 41, 103–106 (2012).

    Article  Google Scholar 

  47. 47

    Löhr, S. C. & Kennedy, M. J. Micro-trace fossils reveal pervasive reworking of Pliocene sapropels by low-oxygen-adapted benthic meiofauna. Nat. Commun. 6, 6589 (2015).

    Article  Google Scholar 

  48. 48

    Harvey, T. H. P. & Butterfield, N. J. Data from: Exceptionally preserved Cambrian loriciferans and the early animal invasion of the meiobenthos. figshare (2016).

  49. 49

    Heiner, I. & Kristensen, R. M. Two new species of the genus Pliciloricus (Loricifera, Pliciloricidae) from the Faroe Bank, North Atlantic. Zool. Anz. 243, 121–138 (2005).

    Article  Google Scholar 

Download references


We thank staff at the Geological Subsurface Laboratory, Regina, Saskatchewan, and M. Vélez, University of Regina, for help with core sampling. We thank geoLOGIC for generous access to subsurface data. This work was supported by Natural Environment Research Council Grant NE/H009914/1.

Author information




T.H.P.H. and N.J.B. designed and performed the research and wrote the paper.

Corresponding author

Correspondence to Thomas H. P. Harvey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1–3 and Supplementary Table 1. (PDF 4071 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harvey, T., Butterfield, N. Exceptionally preserved Cambrian loriciferans and the early animal invasion of the meiobenthos. Nat Ecol Evol 1, 0022 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing