Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genome-wide interrogation advances resolution of recalcitrant groups in the tree of life


Much progress has been achieved in disentangling evolutionary relationships among species in the tree of life, but some taxonomic groups remain difficult to resolve despite increasing availability of genome-scale data sets. Here we present a practical approach to studying ancient divergences in the face of high levels of conflict, based on explicit gene genealogy interrogation (GGI). We show its efficacy in resolving the controversial relationships within the largest freshwater fish radiation (Otophysi) based on newly generated DNA sequences for 1,051 loci from 225 species. Initial results using a suite of standard methodologies revealed conflicting phylogenetic signal, which supports ten alternative evolutionary histories among early otophysan lineages. By contrast, GGI revealed that the vast majority of gene genealogies supports a single tree topology grounded on morphology that was not obtained by previous molecular studies. We also reanalysed published data sets for exemplary groups with recalcitrant resolution to assess the power of this approach. GGI supports the notion that ctenophores are the earliest-branching animal lineage, and adds insight into relationships within clades of yeasts, birds and mammals. GGI opens up a promising avenue to account for incompatible signals in large data sets and to discern between estimation error and actual biological conflict explaining gene tree discordance.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Null morphological hypothesis (H0) and all 14 possible alternative trees for the five major lineages in Otophysi.
Figure 2: Gene genealogy interrogation (GGI) applied to phylogenomic data sets to test alternative hypotheses.
Figure 3: Otophysan phylogeny based on the concatenation analysis of 231 protein genes with minimal missing information.


  1. 1

    Rokas, A., Williams, B. L., King, N. & Carroll, S. B. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425, 798– 804 (2003).

    Article  Google Scholar 

  2. 2

    Betancur-R., R., Naylor, G. & Orti, G. Conserved genes, sampling error, and phylogenomic inference. Syst. Biol. 63, 257– 262 (2014).

    Article  Google Scholar 

  3. 3

    Simmons, M. P., Sloan, D. B. & Gatesy, J. The effects of subsampling gene trees on coalescent methods applied to ancient divergences. Mol. Phylogenet. Evol. 97, 76– 89 (2016).

    Article  Google Scholar 

  4. 4

    Salichos, L. & Rokas, A. Inferring ancient divergences requires genes with strong phylogenetic signals. Nature 497, 327– 331 (2013).

    Article  Google Scholar 

  5. 5

    Chen, M. Y., Liang, D. & Zhang, P. Selecting question-specific genes to reduce incongruence in phylogenomics: a case study of jawed vertebrate backbone phylogeny. Syst. Biol. 64, 1104– 1120 (2015).

    Article  Google Scholar 

  6. 6

    Jeffroy, O., Brinkmann, H., Delsuc, F. & Philippe, H. Phylogenomics: the beginning of incongruence? Trends Genet. 22, 225– 231 (2006).

    Article  Google Scholar 

  7. 7

    Kubatko, L. S. & Degnan, J. H. Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst. Biol. 56, 17– 24 (2007).

    Article  Google Scholar 

  8. 8

    Degnan, J. H. & Rosenberg, N. A. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24, 332– 340 (2009).

    Article  Google Scholar 

  9. 9

    Sen, S., Liu, L., Edwards, S. V. & Wu, S. Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proc. Natl Acad. Sci. USA 109, 14942–14947 (2012).

    Article  Google Scholar 

  10. 10

    Edwards, S. V., Liu, L. & Pearl, D. K. High-resolution species trees without concatenation. Proc. Natl Acad. Sci. USA 104, 5936– 5941 (2007).

    Article  Google Scholar 

  11. 11

    Roch, S. & Steel, M. Likelihood-based tree reconstruction on a concatenation of aligned sequence data sets can be statistically inconsistent. Theor. Popul. Biol. 100C, 56– 62 (2014).

    PubMed  Google Scholar 

  12. 12

    Heled, J. & Drummond, A. J. Bayesian inference of species trees from multilocus data. Mol. Biol. Evol. 27, 570– 580 (2010).

    Article  Google Scholar 

  13. 13

    Chou, J. et al. A comparative study of SVDquartets and other coalescent-based species tree estimation methods. BMC Genomics 16, S2 (2015).

    Article  Google Scholar 

  14. 14

    Gatesy, J. & Springer, M. S. Phylogenetic analysis at deep timescales: unreliable gene trees, bypassed hidden support, and the coalescence/concatalescence conundrum. Mol. Phylogenet. Evol. 80, 231–266 (2014).

    Article  Google Scholar 

  15. 15

    Roch, S. & Warnow, T. On the robustness to gene tree estimation error (or lack thereof) of coalescent-based species tree methods. Syst. Biol. 64, 663–676 (2015).

    CAS  Article  Google Scholar 

  16. 16

    Mirarab, S., Bayzid, M. S., Boussau, B. & Warnow, T. Statistical binning enables an accurate coalescent-based estimation of the avian tree. Science 346, 1250463 (2014).

    Article  Google Scholar 

  17. 17

    Bayzid, M. S., Mirarab, S., Boussau, B. & Warnow, T. Weighted statistical binning: enabling statistically consistent genome-scale phylogenetic analyses. PLoS ONE 10, e0129183 (2015).

    Article  Google Scholar 

  18. 18

    Shen, X. X., Salichos, L. & Rokas, A. A genome-scale investigation of how sequence-, function-, and tree-based gene properties influence phylogenetic inference. Genome Biol. Evol. 8, 2565–2580 (2016).

    CAS  Article  Google Scholar 

  19. 19

    Liu, L. & Edwards, S. V. Comment on “Statistical binning enables an accurate coalescent-based estimation of the avian tree”. Science 350, 171 (2015).

    CAS  Article  Google Scholar 

  20. 20

    Springer, M. S. & Gatesy, J. The gene tree delusion. Mol. Phylogenet. Evol. 94, 1–33 (2016).

    Article  Google Scholar 

  21. 21

    Edwards, S. V. et al. Implementing and testing the multispecies coalescent model: a valuable paradigm for phylogenomics. Mol. Phylogenet. Evol. 94, 447–462 (2016).

    Article  Google Scholar 

  22. 22

    Chifman, J. & Kubatko, L. Quartet inference from SNP data under the coalescent model. Bioinformatics 30, 3317–3324 (2014).

    CAS  Article  Google Scholar 

  23. 23

    Mirarab, S., Bayzid, M. S., Boussau, B. & Warnow, T. Response to Comment on “Statistical binning enables an accurate coalescent-based estimation of the avian tree”. Science 350, 171 (2015).

    CAS  Article  Google Scholar 

  24. 24

    Posada, D. Phylogenomics for systematic biology. Syst. Biol. 65, 353–356 (2016).

    Article  Google Scholar 

  25. 25

    Wu, Y. C., Rasmussen, M. D., Bansal, M. S. & Kellis, M. TreeFix: statistically informed gene tree error correction using species trees. Syst. Biol. 62, 110–120 (2013).

    Article  Google Scholar 

  26. 26

    Alfaro, M. E. et al. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc. Natl Acad. Sci. USA 106, 13410–13414 (2009).

    CAS  Article  Google Scholar 

  27. 27

    Fink, S. V. & Fink, W. L. Interrelationships of the ostariophysan fishes (Teleostei). Zool. J. Linnean Soc. 72, 297–353 (1981).

    Article  Google Scholar 

  28. 28

    Saitoh, K., Miya, M., Inoue, J. G., Ishiguro, N. B. & Nishida, M. Mitochondrial genomics of ostariophysan fishes: perspectives on phylogeny and biogeography. J. Mol. Evol. 56, 464–472 (2003).

    CAS  Article  Google Scholar 

  29. 29

    Nakatani, M., Miya, M., Mabuchi, K., Saitoh, K. & Nishida, M. Evolutionary history of Otophysi (Teleostei), a major clade of the modern freshwater fishes: Pangaean origin and Mesozoic radiation. BMC Evol. Biol. 11, 177 (2011).

    Article  Google Scholar 

  30. 30

    Chen, W. J., Lavoue, S. & Mayden, R. L. Evolutionary origin and early biogeography of otophysan fishes (Ostariophysi: Teleostei). Evolution 67, 2218–2239 (2013).

    Article  Google Scholar 

  31. 31

    Chakrabarty, P., McMahan, C., Fink, W., Stiassny, M. L. & Alfaro, M. in ASIH – American Society of Ichthyologists and Herpetologists (eds Crump, M. L. & Donnelly, M. A.) (2013).

    Google Scholar 

  32. 32

    Hillis, D. M., Heath, T. A. & St. John, K. Analysis and visualization of tree space. Syst. Biol. 54, 471–482 (2005).

    Article  Google Scholar 

  33. 33

    Betancur-R., R., Li, C., Munroe, T. A., Ballesteros, J. A. & Orti, G. Addressing gene-tree discordance and non-stationarity to resolve a multi-locus phylogeny of the flatfishes (Teleostei: Pleuronectiformes). Syst. Biol. 62, 763–785 (2013).

    Article  Google Scholar 

  34. 34

    Romiguier, J., Ranwez, V., Delsuc, F., Galtier, N. & Douzery, E. J. Less is more in mammalian phylogenomics: AT-rich genes minimize tree conflicts and unravel the root of placental mammals. Mol. Biol. Evol. 30, 2134–2144 (2013).

    CAS  Article  Google Scholar 

  35. 35

    Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51, 492–508 (2002).

    Article  Google Scholar 

  36. 36

    Allman, E. S., Degnan, J. H. & Rhodes, J. A. Identifying the rooted species tree from the distribution of unrooted gene trees under the coalescent. J. Math. Biol. 62, 833–862 (2010).

    Article  Google Scholar 

  37. 37

    Degnan, J. H. Anomalous unrooted gene trees. Syst. Biol. 62, 574–590 (2013).

    CAS  Article  Google Scholar 

  38. 38

    Maddison, W. P. Gene trees in species trees. Syst. Biol. 46, 523–536 (1997).

    Article  Google Scholar 

  39. 39

    Pisani, D. et al. Genomic data do not support comb jellies as the sister group to all other animals. Proc. Natl Acad. Sci. USA 112, 15402–15407 (2015).

    CAS  Article  Google Scholar 

  40. 40

    Whelan, N. V., Kocot, K. M., Moroz, L. L. & Halanych, K. M. Error, signal, and the placement of Ctenophora sister to all other animals. Proc. Natl Acad. Sci. USA 112, 5773–5778 (2015).

    CAS  Article  Google Scholar 

  41. 41

    Dunn, C. W., Giribet, G., Edgecombe, G. D. & Hejnol, A. Animal phylogeny and its evolutionary implications. Annu. Rev. Ecol. Evol. Syst. 45, 371– 395 (2014).

    Article  Google Scholar 

  42. 42

    Ryan, J. F. et al. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science 342, 1242592 (2013).

    Article  Google Scholar 

  43. 43

    Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).

    CAS  Article  Google Scholar 

  44. 44

    Suh, A., Smeds, L. & Ellegren, H. The dynamics of incomplete lineage sorting across the ancient adaptive radiation of neoavian birds. PLoS Biol. 13, e1002224 (2015).

    Article  Google Scholar 

  45. 45

    Jarvis, E. D. et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331 (2014).

    CAS  Article  Google Scholar 

  46. 46

    Song, S., Liu, L., Edwards, S. V. & Wub, S. Correction for Song et al., Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proc. Natl Acad. Sci. USA 112, E6079 (2015).

    Article  Google Scholar 

  47. 47

    Hahn, M. W. & Nakhleh, L. Irrational exuberance for resolved species trees. Evolution 70, 7–17 (2016).

    Article  Google Scholar 

  48. 48

    Mamanova, L. et al. Target-enrichment strategies for next-generation sequencing. Nat. Methods 7, 111–118 (2010).

    CAS  Article  Google Scholar 

  49. 49

    Li, C., Hofreiter, M., Straube, N., Corrigan, S. & Naylor, G. J. Capturing protein-coding genes across highly divergent species. BioTechniques 54, 321–326 (2013).

    CAS  Article  Google Scholar 

  50. 50

    Dimmick, W. W. & Larson, A. A molecular and morphological perspective on the phylogenetic relationships of the otophysan fishes. Mol. Phylog. Evol. 6, 120–133 (1996).

    CAS  Article  Google Scholar 

  51. 51

    Alves-Gomes, J. A. in Gonorynchiformes and Ostariophysan Relationships (eds Grande, T., Potayo-Ariza, F. J. & Diogo, R.) (Science Publishers, 2010) 517–565.

    Google Scholar 

  52. 52

    Near, T. J. et al. Resolution of ray-finned fish phylogeny and timing of diversification. Proc. Natl Acad. Sci. USA 109, 13698–13703 (2012).

    CAS  Article  Google Scholar 

  53. 53

    Lavoue, S. et al. Molecular systematics of the gonorynchiform fishes (Teleostei) based on whole mitogenome sequences: Implications for higher-level relationships within the Otocephala. Mol. Phylog. Evol. 37, 165–177 (2005).

    CAS  Article  Google Scholar 

  54. 54

    Betancur-R., R. et al. The tree of life and a new classificaion of bony fishes. PLoS Curr. Tree of Life (2013).

  55. 55

    Shimodaira, H. & Hasegawa, M. CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17, 1246–1247 (2001).

    CAS  Article  Google Scholar 

  56. 56

    Li, C., Orti, G., Zhang, G. & Lu, G. A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study. BMC Evol. Biol. 7, 44 (2007).

    Article  Google Scholar 

  57. 57

    Dettai, A. & Lecointre, G. New insights into the organization and evolution of vertebrate IRBP genes and utility of IRBP gene sequences for the phylogenetic study of the Acanthomorpha (Actinopterygii: Teleostei). Mol. Phylog. Evol. 48, 258–269 (2008).

    CAS  Article  Google Scholar 

  58. 58

    Li, C., Riethoven, J. J. & Naylor, G. J. P. EvolMarkers: a database for mining exon and intron markers for evolution, ecology and conservation studies. Mol. Ecol. Resour. 12, 967–971 (2012).

    CAS  Article  Google Scholar 

  59. 59

    Abascal, F., Zardoya, R. & Telford, M. J. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 38, 7–13 (2010).

    Article  Google Scholar 

  60. 60

    Sharma, P. P. et al. Phylogenomic interrogation of arachnida reveals systemic conflicts in phylogenetic signal. Mol. Biol. Evol. 31, 2963–2984 (2014).

    CAS  Article  Google Scholar 

  61. 61

    Inoue, J., Sato, Y., Sinclair, R., Tsukamoto, K. & Nishida, M. Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling. Proc. Natl Acad. Sci. USA 112, 14918–14923 (2015).

    CAS  Article  Google Scholar 

  62. 62

    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    CAS  Article  Google Scholar 

  63. 63

    R Development Core Team, R: A Language and Environment for Statistical Computing . (R Foundation for Statistical Computing, 2011);

  64. 64

    Kumar, S., Stecher, G., Peterson, D. & Tamura, K. MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis. Bioinformatics 28, 2685–2686 (2012).

    CAS  Article  Google Scholar 

  65. 65

    Murray, K., Mìller, S. & Turlach, B. A. Revisiting fitting monotone polynomials to data. Comp. Stat. 28, 1989–2005 (2013).

    Article  Google Scholar 

  66. 66

    Maddison, W. & Maddision, D. Mesquite: a modular system for evolutionary analysis, version 2.6. (2009).

  67. 67

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).

    CAS  Article  Google Scholar 

  68. 68

    Aberer, A. J., Kobert, K. & Stamatakis, A. ExaBayes: massively parallel bayesian tree inference for the whole-genome era. Mol. Biol. Evol. 31, 2553–2556 (2014).

    CAS  Article  Google Scholar 

  69. 69

    Tracer v1.6 (2014);

  70. 70

    Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786 (2008).

    Article  Google Scholar 

  71. 71

    Liu, L., Yu, L., Pearl, D. K. & Edwards, S. V. Estimating species phylogenies using coalescence times among sequences. Syst. Biol. 58, 468–477 (2009).

    CAS  Article  Google Scholar 

  72. 72

    Liu, L. & Yu, L. Estimating species trees from unrooted gene trees. Syst. Biol. 60, 661–667 (2011).

    Article  Google Scholar 

  73. 73

    Shaw, T. I., Ruan, Z., Glenn, T. C. & Liu, L. STRAW: Species TRee Analysis Web server. Nucleic Acids Res. 41, 238–241 (2013).

    Article  Google Scholar 

  74. 74

    Philippe, H. et al. Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol. 9, e1000602 (2011).

    CAS  Article  Google Scholar 

  75. 75

    Song, S., Liu, L., Edwards, S. V. & Wu, S. Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent modeL. Proc. Natl Acad. Sci. USA 2012 (2012).

Download references


We dedicate this contribution in honour and memory of our friend and valued colleague Richard Vari whose untimely death has left a huge lacuna in the world of otophysan systematics. We thank D. Maddison, for helping with the MDS analyses in Mesquite, and R. Rivero, for helping with illustrations. We also thank S. Edwards and T. Warnow for providing extensive comments on earlier versions of the paper. J. P. Sullivan kindly provided a photograph for Citharinoidei. This work was supported by National Science Foundation (NSF) grants (DEB-147184, DEB-1541491) to R.B.R., (DEB-1457426 and DEB-1541554) to G.O., (DEB-0315963 and DEB-1023403) to J.W.A., and (DEB-1350474) to L.J.R. This project was also funded by the Opportunity Research Program between George Washington University and the Natural History Museum (Smithsonian) to G.O. and R.V and the Smithsonian Peter Buck fellowship to R.B.R.

Author information




D.A., R.B.R., R.V. and G.O. planned the project; R.B.R., K.K and G.O. conducted the pilot experiment; D.A. and R.B.R. carried out the experiments and collected the data; D.A., R.B.R., L.J.R., and G.O. conceived the GGI method; D.A. and R.B.R. analysed data; J.W.A., J.L., M.L.J.S., and M.H.S. collected, identified and curated the fish specimens examined; R.B.R., D.A. and G.O. wrote the paper and all other authors contributed to the writing.

Corresponding author

Correspondence to Ricardo Betancur-R..

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Methods, Supplementary Notes, Supplementary Figures 1–7 and Supplementary Tables 1–8. (PDF 1912 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arcila, D., Ortí, G., Vari, R. et al. Genome-wide interrogation advances resolution of recalcitrant groups in the tree of life. Nat Ecol Evol 1, 0020 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing