Widespread maintenance of genome heterozygosity in Schmidteamediterranea

Abstract

Loss of heterozygosity through inbreeding or mitotic errors leads to reductions in progeny survival and fertility. Loss of heterozygosity is particularly exacerbated in geographically isolated populations, which are prone to inbreeding depression and faster rates of extinction. The regenerative capacities of the hermaphroditic biotype of the planarian Schmidtea mediterranea allowed us to perform a systematic genetic test of Mendelian segregation and study the loss of heterozygosity in the Spiralian superclade in general and planarians in particular. We discovered that ~300 Mb (~37.5%) of the genome retains heterozygosity even after ten generations of inbreeding, and show that these chromosomal regions have low diversity and recombination rates in wild populations. Our genetic and genomic analyses establish S. mediterranea as a genetically tractable system. The research also opens the door to study the evolutionary basis of non-Mendelian mechanisms, the adaptive advantages of chromosome structural heterozygotes and their potential relationship to the robust regenerative capacities of planarians.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Sexual reproduction in S. mediterranea.
Figure 2: Nomenclature and inbreeding pedigree in a hermaphroditic, highly regenerative species (S. mediterranea).
Figure 3: Heterozygosity maintenance in the genomes of S2 and its lineages.
Figure 4: Suppression of loss of heterozygosity during sexual reproduction and mitosis.
Figure 5: Persistence of genome heterozygosity in wild populations from Sardinia.
Figure 6: J/V haplotypes and low recombination rates at non-MI SNPs in male/female gametes.

References

  1. 1

    Sánchez Alvarado, A. Planarian regeneration: its end is its beginning. Cell 124, 241–245 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Reddien, P. W. & Sánchez Alvarado, A. Fundamentals of planarian regeneration. Annu. Rev. Cell Dev. Biol. 20, 725–757 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Newmark, P. A. & Sánchez Alvarado, A. Not your father’s planarian: a classic model enters the era of functional genomics. Nat. Rev. Genet. 3, 210–219 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Pongratz, N., Gerace, L. & Michiels, N. K. Genetic differentiation within and between populations of a hermaphroditic freshwater planarian. Heredity 89, 64–69 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Pongratz, N., Storhas, M., Carranza, S. & Michiels, N. K. Phylogeography of competing sexual and parthenogenetic forms of a freshwater flatworm: patterns and explanations. BMC Evol. Biol. 3, 23 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    D’Souza, T. G., Storhas, M., Schulenburg, H., Beukeboom, L. W. & Michiels, N. K. Occasional sex in an ‘asexual’ polyploid hermaphrodite. Proc. Biol. Sci. 271, 1001–1007 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    D’Souza, T. G., Schulte, R. D., Schulenburg, H. & Michiels, N. K. Paternal inheritance in parthenogenetic forms of the planarian Schmidtea polychroa . Heredity 97, 97–101 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    D’Souza, T. G. & Michiels, N. K. The costs and benefits of occasional sex: theoretical predictions and a case study. J. Hered. 101 (Suppl. 1), S34–S41 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9

    Dunn, C. W., Giribet, G., Edgecombe, G. D. & Hejnol, A. Animal phylogeny and its evolutionary implications. Annu. Rev. Ecol. Evol. S. 45, 371–395 (2014).

    Article  Google Scholar 

  10. 10

    Wang, Y., Zayas, R. M., Guo, T. & Newmark, P. A. Nanos function is essential for development and regeneration of planarian germ cells. Proc. Natl Acad. Sci. USA 104, 5901–5906 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Newmark, P. A., Wang, Y. & Chong, T. Germ cell specification and regeneration in planarians. Cold Spring Harb. Symp. Quant. Biol. 73, 573–581 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Hyman, L. H. The Invertebrates: Platyhelminthes and Rhynchocoela, the Acoelomate Bilateria Vol. II (McGraw-Hill, 1951).

    Google Scholar 

  13. 13

    Collins, J. J. III et al. Genome-wide analyses reveal a role for peptide hormones in planarian germline development. PLoS Biol. 8, e1000509 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Zayas, R. M. et al. The planarian Schmidtea mediterranea as a model for epigenetic germ cell specification: analysis of ESTs from the hermaphroditic strain. Proc. Natl Acad. Sci. USA 102, 18491–18496 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Robb, S. M., Ross, E. & Sánchez Alvarado, A. SmedGD: the Schmidtea mediterranea genome database. Nucleic Acids Res. 36, D599–D606 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Robb, S. M., Gotting, K., Ross, E. & Sánchez Alvarado, A. SmedGD 2.0: The Schmidtea mediterranea genome database. Genesis 53, 535–546 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Nagylaki, T. Introduction to Theoretical Population Genetics (Springer, 1992).

    Google Scholar 

  18. 18

    Sturtevant, A. H. & Beadle, G. W. The relations of inversions in the X chromosome of Drosophila melanogaster to crossing over and disjunction. Genetics 21, 554–604 (1936).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Golczyk, H., Massouh, A. & Greiner, S. Translocations of chromosome end-segments and facultative heterochromatin promote meiotic ring formation in evening primroses. Plant Cell 26, 1280–1293 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Wallace, H. The balanced lethal system of crested newts. Heredity 73, 41–46 (1994).

    Article  Google Scholar 

  21. 21

    Zanders, S. E. et al. Genome rearrangements and pervasive meiotic drive cause hybrid infertility in fission yeast. eLife 3, e02630 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Charlesworth, B. Selection for gamete lethals and S-alleles in complex heterozygotes. Heredity 43, 159–164 (1979).

    Article  Google Scholar 

  23. 23

    Takayama, S. & Isogai, A. Self-incompatibility in plants. Ann. Rev. Plant Biol. 56, 467–489 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Charlesworth, B. Evolutionary genetics. The nature and origin of mating types. Curr. Biol. 4, 739–741 (1994).

    CAS  Article  Google Scholar 

  25. 25

    Levene, H. & Dobzhansky, T. New evidence of heterosis in naturally occurring inversion heterozygotes in Drosophila pseudoobscura . Heredity 12, 37–49 (1958).

    Article  Google Scholar 

  26. 26

    Dobzhansky, T. & Pavlovsky, O. An extreme case of heterosis in a Central American population of Drosophila tropicalis . Proc. Natl Acad. Sci. USA 41, 289–295 (1955).

    CAS  Article  Google Scholar 

  27. 27

    Charlesworth, B. The evolution of sex chromosomes. Science 251, 1030–1033 (1991).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    De Hoff, P. L. et al. Species and population level molecular profiling reveals cryptic recombination and emergent asymmetry in the dimorphic mating locus of C. reinhardtii . PLoS Genet. 9, e1003724 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Umen, J. G. Evolution of sex and mating loci: an expanded view from Volvocine algae. Curr. Opin. Microbiol. 14, 634–641 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30

    Ottolini, C. S. et al. Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nat. Genet. 47, 727–735 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank D. Chao, R. Krumlauf, K. Golic, S. Hawley, T. Piotrowski, E. Jorgensen and D. Grunwald for comments, discussions and suggestions during the preparation of this manuscript. We thank H. Li, J. Vallandingham and M. Gogol for help with data analysis and visualization. We are grateful to M. Pala for the original gift in 1999 of the sexual specimens of S. mediterranea and the Stowers Institute Planarian Core facility for skilful maintenance of our planarian colony. We acknowledge S.M.C. Robb and P. Reddien for the initial establishment of the S2 line, A. Rossi for the discussions and S. Sánchez-Piotrowski for his help in specimen collection. This work was funded in part by the National Institutes of Health (NIH R37GM057260) to A.S.A.

Author information

Affiliations

Authors

Contributions

L.G. and A.S.A. conceived and designed the project. L.G. performed the experiments and data analysis. S.Z. helped with worm culture, crosses and genotyping. E.R. helped with identifying SNPs from the (S2F5b)F6b family. L.G. and B.R. developed algorithms to analyse Mendelian inheritance in small families and performed correlation analysis. L.G. developed figures. L.G. and A.S.A. interpreted the data and prepared the manuscript.

Corresponding author

Correspondence to Alejandro Sánchez Alvarado.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Note, Supplementary References, Supplementary Figures 1–9 (PDF 992 kb)

Supplementary Table 1

List of MI and non-MI SNPs identified (XLSX 1027 kb)

Supplementary Table 2

Probes used in the SNPtype dynamic array (XLSX 41 kb)

Supplementary Table 3

Genotyping Primers used in RFLP or PCR/Sanger sequencing (XLSX 39 kb)

Supplementary Table 4

Genotyping raw data (XLSX 63 kb)

Supplementary Video 1

The mating behavior in Schmidtea mediterranea (MP4 4553 kb)

Supplementary Video 2

The arrested single cells in D5D/D5I unhatched egg capsules were haploid oocytes (MP4 8211 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Zhang, S., Rubinstein, B. et al. Widespread maintenance of genome heterozygosity in Schmidteamediterranea. Nat Ecol Evol 1, 0019 (2017). https://doi.org/10.1038/s41559-016-0019

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing