Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gene expression plasticity as a mechanism of coral adaptation to a variable environment


Local adaptation is ubiquitous, but the molecular mechanisms that give rise to this ecological phenomenon remain largely unknown. A year-long reciprocal transplant of mustard hill coral (Porites astreoides) between a highly environmentally variable inshore habitat and a more stable offshore habitat demonstrated that populations exhibit phenotypic signatures that are consistent with local adaptation. We characterized the genomic basis of this adaptation in both coral hosts and their intracellular symbionts (Symbiodinium sp.) using genome-wide gene expression profiling. Populations differed primarily in their capacity for plasticity: following transplantation to a novel environment, inshore-origin coral expression profiles became significantly more similar to the local population's profiles than those in offshore-origin corals. Furthermore, elevated plasticity of the environmental stress response expression was correlated with lower susceptibility to a natural summer bleaching event, suggesting that plasticity is adaptive in the inshore environment. Our results reveal a novel genomic mechanism of resilience to a variable environment, demonstrating that corals are capable of a more diverse molecular response to stress than previously thought.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Population-level variation in genome-wide gene expression plasticity.
Figure 2: Hierarchical clustering dendrogram of module eigengenes (the first principal component of a module, representative of the overall expression profile for genes within that module) and heat maps of module-trait correlations.
Figure 3: Inshore coral hosts show greater gene expression plasticity of major symbiont-correlated modules than offshore corals.


  1. 1

    Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).

    Article  Google Scholar 

  2. 2

    Hereford, J. A quantitative survey of local adaptation and fitness trade-offs. Am. Nat. 173, 579–588 (2009).

    Article  PubMed  Google Scholar 

  3. 3

    Savolainen, O., Lascoux, M. & Merila, J. Ecological genomics of local adaptation. Nat. Rev. Genet. 14, 807–820 (2013).

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Hodgins-Davis, A. & Townsend, J. P. Evolving gene expression: from G to E to GxE. Trends Ecol. Evol. 24, 649–658 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Lopez-Maury, L., Marguerat, S. & Bahler, J. Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation Nat. Rev. Genet. 9, 583–593 (2008).

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Whitehead, A. & Crawford, D. L. Variation within and among species in gene expression: raw material for evolution. Molec. Ecol. 15, 1197–1211 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Schadt, E. E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Brem, R. B. & Kruglyak, L. The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc. Natl Acad. Sci. USA 102, 1572–1577 (2004).

    Article  Google Scholar 

  9. 9

    Whitehead, A. & Crawford, D. L. Neutral and adaptive variation in gene expression. Proc. Natl Acad. Sci. USA 103, 5425–5430 (2006).

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Meier, K. et al. Local adaptation at the transcriptome level in brown trout: evidence from early life history temperature genomic reaction norms. PLoS ONE 9, e85171 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Kenkel, C. D., Almanza, A. T. & Matz, M. V. Fine-scale environmental specialization of reef-building corals might be limiting reef recovery in the Florida Keys. Ecology 96, 3197–3212 (2015).

    Article  PubMed  Google Scholar 

  12. 12

    Kenkel, C. et al. Evidence for a host role in thermotolerance divergence between populations of the mustard hill coral (Porites astreoides) from different reef environments. Mol. Ecol. 22, 4335–4348 (2013).

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Kenkel, C. D., Setta, S. P. & Matz, M. V. Heritable differences in fitness-related traits among populations of the mustard hill coral, Porites astreoides. Heredity 115, 509–516 (2015).

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Meyer, E., Aglyamova, G. V. & Matz, M. V. Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure. Mol. Ecol. 20, 3599–3616 (2011).

    CAS  PubMed  Google Scholar 

  15. 15

    Lohman, B. K., Weber, J. N. & Bolnick, D. I. Evaluation of TagSeq, a reliable low-cost alternative for RNAseq . Molec. Ecol. Res. (2016).

  16. 16

    Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Langfelder, P. & Horvath, S. Tutorials for the WGCNA Package (UCLA, 2014);

    Google Scholar 

  19. 19

    Boyer, J., Briceño, H., Absten, J., Gilliam, D. & Dodge, D. 2011 Annual Report of the Water Quality Monitoring Project for the Southeast Florida Coral Reef Initiative (SERC Research Reports 72, Southeast Environmental Research Center, 2011);

  20. 20

    Yonge, C. M. & Nicholls, A. G. in Great Barrier Reef Expedition 1928–1929 Vol. 1, 135–176 (British Museum, 1931).

  21. 21

    Barshis, D. et al. Genomic basis for coral resilience to climate change. Proc. Natl Acad. Sci. USA 110, 1387–1392 (2013).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Berkelmans, R. & van Oppen, M. J. H. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc. R. Soc. B 273, 2305–2312 (2006).

    Article  PubMed  Google Scholar 

  23. 23

    Oliver, T. A. & Palumbi, S. R. Many corals host thermally resistant symbionts in high-temperature habitat. Coral Reefs 30, 241–250 (2011).

    Article  Google Scholar 

  24. 24

    Weis, V. M. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211, 3059–3066 (2008).

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Hill, R. & Ralph, P. J. Photosystem II heterogeneity of in hospite zooxanthellae in scleractinian corals exposed to bleaching conditions. Photochem. Photobiol. 82, 1577–1585 (2006).

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Schlichting, C. D. & Pigliucci, M. Phenotypic Evolution: a Reaction Norm Perspective (Sinauer, 1998).

    Google Scholar 

  27. 27

    Aubin-Horth, N. & Renn, S. C. Genomic reaction norms: using integrative biology to understand molecular mechanisms of phenotypic plasticity. Mol. Ecol. 18, 3763–3780 (2009).

  28. 28

    Srensen, J. G., Kristensen, T. N. & Loeschcke, V. The evolutionary and ecological role of heat shock proteins. Ecol. Lett. 6, 1025–1037 (2003).

    Article  Google Scholar 

  29. 29

    Van Tienderen, P. H. Evolution of generalists and specialists in spatially heterogenous environments. Evolution 45, 1317–1331 (1991).

    Article  PubMed  Google Scholar 

  30. 30

    DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13, 77–81 (1998).

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Hendry, A. P. Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. J. Hered. 107, 25–41 (2016).

    Article  PubMed  Google Scholar 

  32. 32

    Draghi, J. A. & Whitlock, M. C. Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation. Evolution 66, 2891–2902 (2012).

    Article  PubMed  Google Scholar 

  33. 33

    Yeh, P. J. & Price, T. D. Adaptive phenotypic plasticity and the successful colonization of a novel environment. Am. Nat. 164, 531–542 (2004).

    Article  PubMed  Google Scholar 

  34. 34

    Kenkel, C. et al. Development of gene expression markers of acute heat-light stress in reef-building corals of the genus Porites. PLoS ONE 6, e26914 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Kenkel, C., Meyer, E. & Matz, M. Gene expression under chronic heat stress in populations of the mustard hill coral (Porites astreoides) from different thermal environments. Mol. Ecol. 22, 4322–4334 (2013).

    CAS  Article  PubMed  Google Scholar 

  36. 36

    Bayer, T. et al. Symbiodinium transcriptomes: genome insights into the dinoflagellate symbionts of reef-building corals. PLoS ONE 7, e35269 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Thornhill, D. J., Fitt, W. K. & Schmidt, G. W. Highly stable symbioses among western Atlantic brooding corals. Coral Reefs 25, 515–519 (2006).

    Article  Google Scholar 

  38. 38

    Langmead, B. & Salzbert, S. Fast gapped-read alignment with Bowtie 2. Nat. Meth. 9, 357–359 (2012).

    CAS  Article  Google Scholar 

  39. 39

    The R Core Team. R A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).

  40. 40

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41

    Jombart, T. adegenet: an R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    CAS  Article  Google Scholar 

  42. 42

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Article  Google Scholar 

  43. 43

    Langfelder, P. & Horvath, S. Fast R functions for robust correlations and hierarchical clustering. J. Stat. Softw. 46, 1–17 (2012).

    Article  Google Scholar 

  44. 44

    The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

Download references


G. Aglyamova prepared the library of samples for Illumina sequencing. M. Strader created the GIS map of the Florida Keys. Bioinformatic analyses were carried out using the computational resources of the Texas Advanced Computing Center (TACC). Funding for this study was provided by NSF DDIG award DEB-1311220 to C.D.K. and M.V.M.

Author information




C.D.K. and M.V.M. conceived and designed experiments. C.D.K. performed experiments, analysed data and wrote the first draft of the manuscript. Both authors contributed to revisions.

Corresponding author

Correspondence to Carly D. Kenkel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–8 and Supplementary Table 1 (PDF 1053 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kenkel, C., Matz, M. Gene expression plasticity as a mechanism of coral adaptation to a variable environment. Nat Ecol Evol 1, 0014 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing