Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria

Abstract

Plasmids are thought to play a key role in bacterial evolution by acting as vehicles for horizontal gene transfer, but the role of plasmids as catalysts of gene evolution remains unexplored. We challenged populations of Escherichia coli carrying the blaTEM-1 β-lactamase gene on either the chromosome or a multicopy plasmid (19 copies per cell) with increasing concentrations of ceftazidime. The plasmid accelerated resistance evolution by increasing the rate of appearance of novel TEM-1 mutations, thereby conferring resistance to ceftazidime, and then by amplifying the effect of TEM-1 mutations due to the increased gene dosage. Crucially, this dual effect was necessary and sufficient for the evolution of clinically relevant levels of resistance. Subsequent evolution occurred by mutations in a regulatory RNA that increased the plasmid copy number, resulting in marginal gains in ceftazidime resistance. These results uncover a role for multicopy plasmids as catalysts for the evolution of antibiotic resistance in bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of plasmid pBGT on bacterial fitness.
Figure 2: Survival curves under increasing concentrations of ceftazidime.
Figure 3: pBGT mutations in the ceftazidime resistant populations.
Figure 4: Characterization of the mutations in blaTEM-1 and RNAI.

Similar content being viewed by others

References

  1. Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    Article  Google Scholar 

  2. Wiedenbeck, J. & Cohan, F. M. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol. Rev. 35, 957–976 (2011).

    Article  Google Scholar 

  3. Baltrus, D. A. Exploring the costs of horizontal gene transfer. Trends Ecol. Evol. 28, 489–495 (2013).

    Article  Google Scholar 

  4. Vogwill, T. & MacLean, R. C. The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach. Evol. Appl. 8, 284–295 (2014).

    Article  Google Scholar 

  5. Stewart, F. M. & Levin, B. R. The population biology of bacterial plasmids: a priori conditions for the existence of conjugationally transmitted factors. Genetics 87, 209–228 (1977).

    Google Scholar 

  6. Levin, B. R. & Stewart, F. M. The population biology of bacterial plasmids: a priori conditions for the existence of mobilizable nonconjugative factors. Genetics 94, 425–443 (1980).

    Google Scholar 

  7. Bergstrom, C. T., Lipsitch, M. & Levin, B. R. Natural selection, infectious transfer and the existence conditions for bacterial plasmids. Genetics 155, 1505–1519 (2000).

    Google Scholar 

  8. Harrison, E. & Brockhurst, M. A. Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends Microbiol. 20, 262–267 (2012).

    Article  Google Scholar 

  9. San Millan, A. et al. Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids. Nat. Commun. 5, 5208 (2014).

    Article  Google Scholar 

  10. Harrison, E., Guymer, D., Spiers, A. J., Paterson, S. & Brockhurst, M. A. Parallel compensatory evolution stabilizes plasmids across the parasitism–mutualism continuum. Curr. Biol. 25, 2034–2039 (2015).

    Article  Google Scholar 

  11. Peña-Miller, R., Rodríguez-González, R., MacLean, R. C. & San Millan, A. Evaluating the effect of horizontal transmission on the stability of plasmids under different selection regimes. Mob. Genet. Elements 22, 1–5 (2015).

    Google Scholar 

  12. Modi, R. I., Castilla, L. H., Puskas-Rozsa, S., Helling, R. B. & Adams, J. Genetic changes accompanying increased fitness in evolving populations of Escherichia coli . Genetics 130, 241–249 (1992).

    Google Scholar 

  13. Stoesser, N. et al. Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131. MBio 7, e02162 (2016).

    Article  Google Scholar 

  14. Latorre, A., Gil, R., Silva, F. J. & Moya, A. Chromosomal stasis versus plasmid plasticity in aphid endosymbiont Buchnera aphidicola . Heredity 95, 339–347 (2005).

    Article  Google Scholar 

  15. Zhang, Z., Qian, W. & Zhang, J. Positive selection for elevated gene expression noise in yeast. Mol. Syst. Biol. 5, 299 (2009).

    Article  Google Scholar 

  16. Martinez, J. L. & Baquero, F. Mutation frequencies and antibiotic resistance. Antimicrob. Agents Chemother. 44, 1771–1777 (2000).

    Article  Google Scholar 

  17. Couce, A., Rodriguez-Rojas, A. & Blazquez, J. Bypass of genetic constraints during mutator evolution to antibiotic resistance. Proc. Biol. Sci. 282, 20142698 (2015).

    Article  Google Scholar 

  18. Sano, E., Maisnier-Patin, S., Aboubechara, J. P., Quinones-Soto, S. & Roth, J. R. Plasmid copy number underlies adaptive mutability in bacteria. Genetics 198, 919–933 (2014).

    Article  Google Scholar 

  19. Hendrickson, H., Slechta, E. S., Bergthorsson, U., Andersson, D. I. & Roth, J. R. Amplification-mutagenesis: evidence that "directed" adaptive mutation and general hypermutability result from growth with a selected gene amplification. Proc. Natl Acad. Sci. USA 99, 2164–2169 (2002).

    Article  Google Scholar 

  20. Sarno, R., McGillivary, G., Sherratt, D. J., Actis, L. A. & Tolmasky, M. E. Complete nucleotide sequence of Klebsiella pneumoniae multiresistance plasmid pJHCMW1. Antimicrob. Agents Chemother. 46, 3422–3427 (2002).

    Article  Google Scholar 

  21. Søndergaard, A. et al. Molecular organization of small plasmids bearing blaTEM-1 and conferring resistance to beta-lactams in Haemophilus influenzae . Antimicrob. Agents Chemother. 56, 4958–4960 (2012).

    Article  Google Scholar 

  22. Vignoli, R. et al. New TEM-derived extended-spectrum beta-lactamase and its genomic context in plasmids from Salmonella enterica serovar derby isolates from Uruguay. Antimicrob. Agents Chemother. 50, 781–784 (2006).

    Article  Google Scholar 

  23. Bershtein, S., Segal, M., Bekerman, R., Tokuriki, N. & Tawfik, D. S. Robustness–epistasis link shapes the fitness landscape of a randomly drifting protein. Nature 444, 929–932 (2006).

    Article  Google Scholar 

  24. Stiffler, M. A., Hekstra, D. R. & Ranganathan, R. Evolvability as a function of purifying selection in TEM-1 beta-lactamase. Cell 160, 882–892 (2015).

    Article  Google Scholar 

  25. Schenk, M. F., Szendro, I. G., Krug, J. & de Visser, J. A. Quantifying the adaptive potential of an antibiotic resistance enzyme. PLoS Genet. 8, e1002783 (2012).

    Article  Google Scholar 

  26. San Millan, A. et al. Small-plasmid-mediated antibiotic resistance is enhanced by increases in plasmid copy number and bacterial fitness. Antimicrob. Agents Chemother. 59, 3335–3341 (2015).

    Article  Google Scholar 

  27. San Millan, A., Heilbron, K. & MacLean, R. C. Positive epistasis between co-infecting plasmids promotes plasmid survival in bacterial populations. ISME J. 8, 601–612 (2014).

    Article  Google Scholar 

  28. Reguera, J. A., Baquero, F., Perez-Diaz, J. C. & Martinez, J. L. Synergistic effect of dosage and bacterial inoculum in TEM-1 mediated antibiotic resistance. Eur. J. Clin. Microbiol. Infect. Dis. 7, 778–779 (1988).

    Article  Google Scholar 

  29. Martinez, J. L. et al. Resistance to beta-lactam/clavulanate. Lancet 2, 1473 (1987).

    Article  Google Scholar 

  30. Artemova, T., Gerardin, Y., Dudley, C., Vega, N. M. & Gore, J. Isolated cell behavior drives the evolution of antibiotic resistance. Mol. Syst. Biol. 11, 822 (2015).

    Article  Google Scholar 

  31. Gullberg, E., Albrecht, L. M., Karlsson, C., Sandegren, L. & Andersson, D. I. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. MBio 5, e01918–14 (2014).

    Article  Google Scholar 

  32. Salverda, M. L., De Visser, J. A. & Barlow, M. Natural evolution of TEM-1 β-lactamase: experimental reconstruction and clinical relevance. FEMS Microbiol. Rev. 34, 1015–1036 (2010).

    Article  Google Scholar 

  33. Tavio, M. M., Aquili, V. D., Vila, J. & Poveda, J. B. Resistance to ceftazidime in Escherichia coli associated with AcrR, MarR and PBP3 mutations and overexpression of sdiA. J. Med. Microbiol. 63, 56–65 (2014).

    Article  Google Scholar 

  34. Hirakawa, H., Nishino, K., Yamada, J., Hirata, T. & Yamaguchi, A. Beta-lactam resistance modulated by the overexpression of response regulators of two-component signal transduction systems in Escherichia coli . J. Antimicrob. Chemother. 52, 576–582 (2003).

    Article  Google Scholar 

  35. Cai, S. J. & Inouye, M. EnvZ-OmpR interaction and osmoregulation in Escherichia coli . J. Biol. Chem. 277, 24155–24161 (2002).

    Article  Google Scholar 

  36. Jacquier, H. et al. In vivo selection of a complex mutant TEM (CMT) from an inhibitor-resistant TEM (IRT) during ceftazidime therapy. J. Antimicrob. Chemother. 68, 2792–2796 (2013).

    Article  Google Scholar 

  37. Negri, M. C., Lipsitch, M., Blazquez, J., Levin, B. R. & Baquero, F. Concentration-dependent selection of small phenotypic differences in TEM beta-lactamase-mediated antibiotic resistance. Antimicrob. Agents Chemother. 44, 2485–2491 (2000).

    Article  Google Scholar 

  38. Nasvall, J., Sun, L., Roth, J. R. & Andersson, D. I. Real-time evolution of new genes by innovation, amplification, and divergence. Science 338, 384–387 (2012).

    Article  Google Scholar 

  39. Sandegren, L. & Andersson, D. I. Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat. Rev. Microbiol. 7, 578–588 (2009).

    Article  Google Scholar 

  40. Tomizawa, J., Itoh, T., Selzer, G. & Som, T. Inhibition of ColE1 RNA primer formation by a plasmid-specified small RNA. Proc. Natl Acad. Sci. USA 78, 1421–1425 (1981).

    Article  Google Scholar 

  41. Tomizawa, J. Control of ColE1 plasmid replication: the process of binding of RNA I to the primer transcript. Cell 38, 861–870 (1984).

    Article  Google Scholar 

  42. Lacatena, R. M. & Cesareni, G. Interaction between RNA1 and the primer precursor in the regulation of Co1E1 replication. J. Mol. Biol. 170, 635–650 (1983).

    Article  Google Scholar 

  43. Lacatena, R. M. & Cesareni, G. Base pairing of RNA I with its complementary sequence in the primer precursor inhibits ColE1 replication. Nature 294, 623–626 (1981).

    Article  Google Scholar 

  44. Breakpoint Tables for Interpretation of MICs and Zone Diameters v. 6.0. (The European Committee on Antimicrobial Susceptibility Testing, 2016); http://www.eucast.org

  45. Wang, X., Minasov, G. & Shoichet, B. K. Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. J. Mol. Biol. 320, 85–95 (2002).

    Article  Google Scholar 

  46. Ohno, S. Evolution by Gene Duplication (Springer, 1970).

    Book  Google Scholar 

  47. Toll-Riera, M., San Millan, A., Wagner, A. & MacLean, R. C. The genomic basis of evolutionary innovation in Pseudomonas aeruginosa. PLoS Genet. 12, e1006005 (2016).

    Article  Google Scholar 

  48. Andersson, D. I. & Hughes, D. Gene amplification and adaptive evolution in bacteria. Annu. Rev. Genet. 43, 167–195 (2009).

    Article  Google Scholar 

  49. Lindsey, H. A., Gallie, J., Taylor, S. & Kerr, B. Evolutionary rescue from extinction is contingent on a lower rate of environmental change. Nature 494, 463–467 (2013).

    Article  Google Scholar 

  50. Baquero, F. & Negri, M. C. Selective compartments for resistant microorganisms in antibiotic gradients. Bioessays 19, 731–736 (1997).

    Article  Google Scholar 

  51. Performance standards for antimicrobial susceptibility testing. 19th ed. (Clinical and Laboratory Standards Institute, 2009).

  52. Escudero, J. A. et al. Unmasking the ancestral activity of integron integrases reveals a smooth evolutionary transition during functional innovation. Nat. Commun. 7, 10937 (2016).

    Article  Google Scholar 

  53. Demarre, G., Frumerie, C., Gopaul, D. N. & Mazel, D. Identification of key structural determinants of the IntI1 integron integrase that influence attC x attI1 recombination efficiency. Nucleic Acids Res. 35, 6475–6489 (2007).

    Article  Google Scholar 

  54. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  Google Scholar 

  55. Chaveroche, M. K., Ghigo, J. M. & d’Enfert, C. A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res. 28, E97 (2000).

    Article  Google Scholar 

  56. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    Article  Google Scholar 

  57. Le Roux, F., Binesse, J., Saulnier, D. & Mazel, D. Construction of a Vibrio splendidus mutant lacking the metalloprotease gene vsm by use of a novel counterselectable suicide vector. Appl. Environ. Microbiol. 73, 777–784 (2007).

    Article  Google Scholar 

  58. Lee, C., Kim, J., Shin, S. G. & Hwang, S. Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli . J. Biotechnol. 123, 273–280 (2006).

    Article  Google Scholar 

  59. Deatherage, D. E. & Barrick, J. E. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol. Biol. 1151, 165–1882 (2014).

    Article  Google Scholar 

  60. Barrick, J. E. et al. Identifying structural variation in haploid microbial genomes from short-read resequencing data using breseq. BMC Genomics 15, 1039 (2014).

    Article  Google Scholar 

  61. Deatherage, D. E., Traverse, C. C., Wolf, L. N. & Barrick, J. E. Detecting rare structural variation in evolving microbial populations from new sequence junctions using breseq. Front. Genet. 5, 468 (2014).

    Google Scholar 

  62. Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

A.S.M. thanks E. Frago for his help with the statistical analyses. This work was supported by funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant (StG-2011-281591). A.S.M. is supported by a Miguel Servet fellowship from the Instituto de Salud Carlos III (MS15/00012) co-financed by the European Social Fund and The European Development Regional Fund ‘A way to achieve Europe’ (ERDF). J.A.E. is supported by a Marie Curie Intra-European Fellowship for Career Development (FP-7-PEOPLE-2011-IEF, ICADIGE). Work in the Mazel lab was supported by the Institut Pasteur, the Centre National de la Recherche Scientifique (CNRS-UMR3525) and the European Union Seventh Framework Programme (FP7-HEALTH- 2011-single-stage), the ‘Evolution and Transfer of Antibiotic Resistance’ (EvoTAR, FP7- HEALTH-282004).

We thank the High-Throughput Genomics Group at the Wellcome Trust Centre for Human Genetics funded by Wellcome Trust grant reference 090532/Z/09/Z and Medical Research Council Hub grant G0900747 91070 for generation of the high-throughput sequencing data.

Author information

Authors and Affiliations

Authors

Contributions

A.S.M. and R.C.M. were responsible for the conceptualization of this study; A.S.M., J.A.E., and D.R.G. designed the methodology; formal analysis was by D.R.G.; A.S.M. and J.A.E. carried out the investigations; A.S.M. and R.C.M. prepared the original draft of the manuscript and also undertook the reviewing and editing; R.C.M. and D.M. were responsible for funding acquisition and for supervision; D.M. oversaw the resources; project administration was performed by A.S.M.

Corresponding author

Correspondence to Alvaro San Millan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1,2, Supplementary Tables 1–3 and Supplementary References. (PDF 214 kb)

Supplementary Data 1

Description of the mutations affecting the chromosome and pBGT in the different populations and clones of MG, MG::blaTEM-1 and MG/pBGT analysed in this work. The position and nature of the mutations are indicated, as well as the genes affected and their activity. The frequencies of the mutations in the different populations and clones are also indicated. (XLSX 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

San Millan, A., Escudero, J., Gifford, D. et al. Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria. Nat Ecol Evol 1, 0010 (2017). https://doi.org/10.1038/s41559-016-0010

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-016-0010

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology