Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The transcriptional architecture of phenotypic dimorphism

Subjects

Abstract

The profound differences in gene expression between the sexes are increasingly used to study the molecular basis of sexual dimorphism, sexual selection and sexual conflict. Studies of transcriptional architecture, based on comparisons of gene expression, have also been implemented for a wide variety of other intra-specific polymorphisms. These efforts are based on key assumptions regarding the relationship between transcriptional architecture, phenotypic variation and the target of selection. Some of these assumptions are better supported by available evidence than others. In all cases, the evidence is largely circumstantial, leaving considerable gaps in our understanding of the relationship between transcriptional and phenotypic dimorphism.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Correlation between male and female expression in red junglefowl.
Figure 2: Regulatory complexity.

References

  1. 1

    Linnen, C. R. et al. Adaptive evolution of multiple traits through multiple mutations at a single gene. Science 339, 1312–1316 (2013).

    CAS  Article  Google Scholar 

  2. 2

    Shapiro, M. D. et al. Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428, 717–723 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Chen, Y. C. et al. Expression change in Angiopoietin-1 underlies change in relative brain size in fish. Proc. R. Soc. B 282, 9 (2015).

    Article  CAS  Google Scholar 

  4. 4

    Khila, A., Abouheif, E. & Rowe, L. Function, developmental genetics, and fitness consequences of a sexually antagonistic trait. Science 336, 585–589 (2012).

    CAS  Article  Google Scholar 

  5. 5

    Colombo, M. et al. The ecological and genetic basis of convergent thick-lipped phenotypes in cichlid fishes. Mol. Ecol. 22, 670–684 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Manousaki, T. et al. Parsing parallel evolution: ecological divergence and differential gene expression in the adaptive radiations of thick-lipped Midas cichlid fishes from Nicaragua. Mol. Ecol. 22, 650–669 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Ferreira, P. G. et al. Transcriptome analyses of primitively eusocial wasps reveal novel insights into the evolution of sociality and the origin of alternative phenotypes. Genome Biol. 14, R20 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Hunt, B. G. et al. Relaxed selection is a precursor to the evolution of phenotypic plasticity. Proc. Natl Acad. Sci. USA 108, 15936–15941 (2011).

    CAS  Article  Google Scholar 

  9. 9

    Patalano, S. et al. Molecular signatures of plastic phenotypes in two eusocial insect species with simple societies. Proc. Natl Acad. Sci. USA 112, 13970–13975 (2015).

    CAS  Article  Google Scholar 

  10. 10

    Ghalambor, C. K. et al. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525, 372–375 (2015).

    CAS  Article  Google Scholar 

  11. 11

    Darwin, C. The Descent of Man, and Selection in Relation to Sex (Murray, 1871).

    Book  Google Scholar 

  12. 12

    Lande, R. Sexual dimorphism, sexual selection and adaptation in polygenic characters. Evolution 34, 292–305 (1980).

    Article  Google Scholar 

  13. 13

    Rice, W. R. Sex chromosomes and the evolution of sexual dimorphism. Evolution 38, 735–742 (1984).

    Article  Google Scholar 

  14. 14

    Bachtrog, D. et al. Sex determination: why so many ways of doing it?. PLoS Biol. 12, e101899 (2014).

    Article  CAS  Google Scholar 

  15. 15

    Hollis, B., Houle, D., Yan, Z., Kawecki, T. J. & Keller, L. Evolution under monogamy feminizes gene expression in Drosophila melanogaster. Nat. Commun. 5, 3482 (2014).

    Article  CAS  Google Scholar 

  16. 16

    Innocenti, P. & Morrow, E. H. The sexually antagonistic genes of Drosophila melanogaster. PLoS Biol. 8, e1000355 (2010).

    Article  CAS  Google Scholar 

  17. 17

    Stuglik, M. T., Babik, W., Prokop, Z. & Radwan, J. Alternative reproductive tactics and sex-biased gene expression: the study of the bulb mite transcriptome. Ecol. Evol. 4, 623–632 (2014).

    Article  Google Scholar 

  18. 18

    Harrison, P. W. et al. Sexual selection drives evolution and rapid turnover of male gene expression. Proc. Natl Acad. Sci. USA 112, 4393–4398 (2015).

    CAS  Article  Google Scholar 

  19. 19

    Pointer, M. A., Harrison, P. W., Wright, A. E. & Mank, J. E. Masculinization of gene expression is associated with exaggeration of male sexual dimorphism. PLoS Genet. 9, e1003697 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Gossmann, T. I., Schmid, M. W., Grossniklaus, U. & Schmid, K. J. Selection-driven evolution of sex-biased genes is consistent with sexual selection in Arabidopsis thaliana. Mol. Biol. Evol. 31, 574–583 (2014).

    CAS  Article  Google Scholar 

  21. 21

    Zemp, N., Tavares, R. & Widmer, A. Fungal infection induces sex-specific transcriptional changes and alters sexual dimorphism in the dioecious plant Silene latifolia. PLoS Genet. 11, e1005536 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Whittle, C. A. & Johannesson, H. Evolutionary dynamics of sex-biased genes in a hermaphrodite fungus. Mol. Biol. Evol. 30, 2435–2446 (2013).

    CAS  Article  Google Scholar 

  23. 23

    Lipinska, A. et al. Sexual dimorphism and the evolution of sex-biased gene expression in the brown alga Ectocarpus. Mol. Biol. Evol. 32, 1581–1597 (2015).

    CAS  Article  Google Scholar 

  24. 24

    Mank, J. E., Nam, K., Brunstrom, B. & Ellegren, H. Ontogenetic complexity of sexual dimorphism and sex-specific selection. Mol. Biol. Evol. 27, 1570–1578 (2010).

    CAS  Article  Google Scholar 

  25. 25

    Zhang, Y., Sturgill, D., Parisi, M., Kumar, S. & Oliver, B. Constraint and turnover in sex-biased gene expression in the genus Drosophila. Nature 450, 233–237 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Mank, J. E., Hultin-Rosenberg, L., Axelsson, E. & Ellegren, H. Rapid evolution of female-biased, but not male-biased, genes expressed in the avian brain. Mol. Biol. Evol. 24, 2698–2706 (2007).

    CAS  Article  Google Scholar 

  27. 27

    Yang, X. et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 16, 995–1004 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Mank, J. E., Hultin-Rosenberg, L., Webster, M. T. & Ellegren, H. The unique genomic properties of sex-biased genes: insights from avian microarray data. BMC Genomics 9, 148 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Perry, J. C., Harrison, P. W. & Mank, J. E. The ontogeny and evolution of sex-biased gene expression in Drosophila melanogaster. Mol. Biol. Evol. 31, 1206–1219 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30

    Wyman, M. J., Agrawal, A. F. & Rowe, L. Condition-dependence of the sexually dimorphic transcriptome in Drosophila melanogaster. Evolution 64, 1836–1848 (2010).

    Article  Google Scholar 

  31. 31

    Emlen, D. J., Warren, I. A., Johns, A., Dworkin, I. & Lavine, L. C. A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science 337, 860–864 (2012).

    CAS  Article  Google Scholar 

  32. 32

    Connallon, T. & Clark, A. G. Association between sex-biased gene expression and mutations with sex-specific phenotypic consequences in Drosophila. Genome Biol. Evol. 3, 151–155 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33

    Mackay, T. F. C., Stone, E. A. & Ayroles, J. F. The genetics of quantitative traits: challenges and prospects. Nat. Rev. Genet. 10, 565–577 (2009).

    CAS  Article  Google Scholar 

  34. 34

    Ober, C., Loisel, D. A. & Gilad, Y. Sex-specific genetic architecture of human disease. Nat. Rev. Genet. 9, 911–922 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Randall, J. C. et al. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLoS Genet. 9, e1003500 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Winkler, T. W. et al. The influence of age and sex on genetic associations with adult body size and shape: a large-scale genome-wide interaction study. PLoS Genet. 11, e1005378 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Derome, N. et al. Pervasive sex-linked effects on transcription regulation as revealed by expression quantitative trait loci mapping in lake whitefish species pairs (Coregonus sp., sahnonidae). Genetics 179, 1903–1917 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Van Nas, A. et al. Expression quantitative trait loci: replication, tissue- and sex-specificity in mice. Genetics 185, 1059–1068 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Whiteley, A. R. et al. The phenomics and expression quantitative trait locus mapping of brain transcriptomes regulating adaptive divergence in lake whitefish species pairs (Coregonus sp.). Genetics 180, 147–164 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40

    Kirkpatrick, M. & Hall, D. W. Sexual selection and sex linkage. Evolution 58, 683–691 (2004).

    Article  Google Scholar 

  41. 41

    Reeve, H. K. & Pfennig, D. W. Genetic biases for showy males: are some genetic systems especially conducive to sexual selection? Proc. Natl Acad. Sci. USA 100, 1089–1094 (2003).

    CAS  Article  Google Scholar 

  42. 42

    Slate, J. From Beavis to beak color: a simulation study to examine how much QTL mapping can reveal about the genetic architecture of quantitative traits. Evolution 67, 1251–1262 (2013).

    Google Scholar 

  43. 43

    Badyaev, A. V. Growing apart: an ontogenetic perspective on the evolution of sexual size dimorphism. Trends Ecol. Evol. 17, 369–378 (2002).

    Article  Google Scholar 

  44. 44

    Tang, F. C. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    CAS  Article  Google Scholar 

  45. 45

    Stulp, G., Barrett, L., Tropf, F. C. & Mills, M. Does natural selection favour taller stature among the tallest people on earth?. Proc. R. Soc. B 282, 20150211 (2015).

    Article  Google Scholar 

  46. 46

    Delph, L. F., Steven, J. C., Anderson, I. A., Herlihy, C. R. & Brodie, E. D. Elimination of a genetic correlation between the sexes via artificial correlation selection. Evolution 65, 2872–2880 (2011).

    Article  Google Scholar 

  47. 47

    Gosden, T. P. & Chenoweth, S. F. The evolutionary stability of cross-sex, cross-trait genetic correlations. Evolution 68, 1687–1697 (2014).

    Article  Google Scholar 

  48. 48

    Stearns, S. C., Govindaraju, D. R., Ewbank, D. & Byars, S. G. Constraints on the coevolution of contemporary human males and females. Proc. R. Soc. B 279, 4836–4844 (2012).

    Article  Google Scholar 

  49. 49

    Fairbairn, D. J., Blanckenhorn, W. & Szekeley, T. Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism (Oxford Univ. Press, 2007).

    Book  Google Scholar 

  50. 50

    Lande, R. The genetic covariance between characters maintained by pleiotropic mutations. Genetics 94, 203–215 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Griffin, R. M., Dean, R., Grace, J. L., Ryden, P. & Friberg, U. The shared genome is a pervasive constraint on the evolution of sex-biased gene expression. Mol. Biol. Evol. 30, 2168–2176 (2013).

    CAS  Article  Google Scholar 

  52. 52

    Connallon, T. & Knowles, L. L. Intergenomic conflict revealed by patterns of sex-biased gene expression. Trends Genet. 21, 495–499 (2005).

    CAS  Article  Google Scholar 

  53. 53

    Ellegren, H. & Parsch, J. The evolution of sex-biased genes and sex-biased gene expression. Nat. Rev. Genet. 8, 689–698 (2007).

    CAS  Article  Google Scholar 

  54. 54

    Ament, S. A., Corona, M., Pollock, H. S. & Robinson, G. E. Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. Proc. Natl Acad. Sci. USA 105, 4226–4231 (2008).

    CAS  Article  Google Scholar 

  55. 55

    Smith, C. R., Toth, A. L., Suarez, A. V. & Robinson, G. E. Genetic and genomic analyses of the division of labour in insect societies. Nat. Rev. Genet. 9, 735–748 (2008).

    CAS  Article  Google Scholar 

  56. 56

    Whitfield, C. W., Cziko, A. M. & Robinson, G. E. Gene expression profiles in the brain predict behavior in individual honey bees. Science 302, 296–299 (2003).

    CAS  Article  Google Scholar 

  57. 57

    Windig, J. J., Brakefield, P. M., Reitsma, N. & Wilson, J. G. M. Seasonal polyphenism in the wild: survey of wing patterns in five species of Bicyclus butterflies in Malawi. Ecol. Entomol. 19, 285–298 (2008).

    Article  Google Scholar 

  58. 58

    Connallon, T. & Clark, A. G. Sex linkage, sex-specific selection and the role of recombination in the evolution of sexually dimorphic gene expression. Evolution 64, 3417–3442 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  59. 59

    Dean, R. & Mank, J. E. Tissue-specificity and sex-specific regulatory variation permits the evolution of sex-biased gene expression. Am. Nat. 188, E74–E84 (2016).

    Article  Google Scholar 

  60. 60

    Mank, J. E., Hultin-Rosenberg, L., Zwahlen, M. & Ellegren, H. Pleiotropic constraint hampers the resolution of sexual antagonism in vertebrate gene expression. Am. Nat. 171, 35–43 (2008).

    Article  Google Scholar 

  61. 61

    Meisel, R. P. Towards a more nuanced understanding of the relationship between sex-biased gene expression and rates of protein-coding sequence evolution. Mol. Biol. Evol. 28, 1893–1900 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62

    Jaquiery, J. et al. Masculinization of the X chromosome in the pea aphid. PLoS Genet. 9, e1003690 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63

    Khil, P. P., Smirnova, N. A., Romanienko, P. J. & Camerini-Otero, R. D. The mouse X chromosome is enriched for sex-biased genes not subject to selection by meiotic sex chromosome inactivation. Nat. Genet. 36, 642–646 (2004).

    CAS  Article  Google Scholar 

  64. 64

    Sturgill, D., Zhang, Y., Parisi, M. & Oliver, B. Demasculinization of X chromosomes in the Drosophila genus. Nature 450, 238–241 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65

    Meisel, R. P., Malone, J. H. & Clark, A. G. Disentangling the relationship between sex-biased gene expression and X-linkage. Genome Res. 22, 1255–1265 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66

    Mank, J. E. & Ellegren, H. Sex-linkage of sexually antagonistic genes is predicted by female, but not male, effects in birds. Evolution 63, 1464–1472 (2009).

    CAS  Article  Google Scholar 

  67. 67

    Prince, E. G., Kirkland, D. & Demuth, J. P. Hyperexpression of the X chromosome in both sexes results in extensive female-bias of X-linked genes in the flour beetle. Genome Biol. Evol. 2, 336–346 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Wright, A. E., Moghadam, H. K. & Mank, J. E. Trade-off between selection for dosage compensation and masculinization on the avian Z chromosome. Genetics 192, 1433–1445 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69

    Wright, A. E., Zimmer, F., Harrison, P. W. & Mank, J. E. Conservation of regional variation in sex-specific sex chromosome regulation. Genetics 201, 587–598 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70

    Moghadam, H. K., Pointer, M. A., Wright, A. E., Berlin, S. & Mank, J. E. W chromosome expression responds to female-specific selection. Proc. Natl Acad. Sci. USA 109, 8207–8211 (2012).

    CAS  Article  Google Scholar 

  71. 71

    Immonen, E., Snook, R. R. & Ritchie, M. G. Mating system variation drives rapid evolution of the female transcriptome in Drosophila pseudoobscura. Ecol. Evol. 4, 2186–2201 (2014).

    PubMed  PubMed Central  Google Scholar 

  72. 72

    Seddon, N. et al. Sexual selection accelerates signal evolution during speciation in birds. Proc. R. Soc. B 280, 20131065 (2013).

    Article  Google Scholar 

  73. 73

    Ometto, L., Shoemaker, D., Ross, K. G. & Keller, L. Evolution of gene expression in fire ants: the effects of developmental stage, caste, and species. Mol. Biol. Evol. 28, 1381–1392 (2011).

    CAS  Article  Google Scholar 

  74. 74

    Brawand, D. et al. The evolution of gene expression levels in mammalian organs. Nature 478, 343–348 (2011).

    CAS  Article  Google Scholar 

  75. 75

    Shapiro, M. D., Bell, M. A. & Kingsley, D. M. Parallel genetic origings of pelvic reductions in vertebrates. Proc. Natl Acad. Sci. USA 103, 13573–13758 (2006).

    Google Scholar 

  76. 76

    Brakefield, P. M. et al. Development, plasticity and evolution of butterfly eyespot patterns. Nature 384, 236–242 (1996).

    CAS  Article  Google Scholar 

  77. 77

    Blows, M. W., Alen, S. L., Collet, J. M., Chenoweth, S. F. & McGuigan, K. The phenome-wide distribution of genetic variance. Am. Nat. 186, 15–30 (2015).

    Article  Google Scholar 

  78. 78

    Collet, J. M. Transcriptome-wide effects of seuxal selection on the fate of new mutations. Evolution 96, 2905–2916 (2015).

    Article  CAS  Google Scholar 

  79. 79

    McGuigan, K., Aguirre, J. D. & Blows, M. W. Simultaneous estimation of additive and mutational genetic variance in an outbred population of Drosophila serrata. Genetics 201, 1239–1251 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. 80

    Gompel, N., Prud'homme, B., Wittkopp, P. J., Kassner, V. A. & Carroll, S. B. Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila. Nature 433, 481–487 (2005).

    CAS  Article  Google Scholar 

  81. 81

    Prud'homme, B. et al. Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature 440, 1050–1053 (2006).

    CAS  Article  Google Scholar 

  82. 82

    Blekhman, R., Marioni, J. C., Zumbo, P., Stephens, M. & Gilad, Y. Sex-specific and lineage-specific alternative splicing in primates. Genome Res. 20, 180–189 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. 83

    Mullon, C., Wright, A. E., Reuter, M., Pomiankowski, A. & Mank, J. E. Evolution of dosage compensation under sexual selection differs between X and Z chromosomes. Nat. Commun. 6, 7720 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. 84

    Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. 85

    Wen, W. Q. et al. Meta-analysis of genome-wide association studies in East Asian-ancestry populations identifies four new loci for body mass index. Human Mol. Genet. 23, 5492–5504 (2014).

    CAS  Article  Google Scholar 

  86. 86

    Wood, A. R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 46, 1173–1186 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. 87

    Yao, C. et al. Sex- and age-interacting eQTLs in human complex diseases. Human mol. Genet. 23, 1947–1956 (2014).

    CAS  Article  Google Scholar 

  88. 88

    Ranz, J. M., Castillo-Davis, C. I., Meiklejohn, C. D. & Hartl, D. L. Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science 300, 1742–1745 (2003).

    CAS  Article  Google Scholar 

  89. 89

    Zhang, Z., Hambuch, T. M. & Parsch, J. Molecular evolution of sex-biased genes in Drosophila. Mol. Biol. Evol. 21, 2130–2139 (2004).

    CAS  Article  Google Scholar 

  90. 90

    Pal, C., Papp, B. & Hurst, L. D. Highly expressed genes in yeast evolve slowly. Genetics 158, 927–931 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Urrutia, A. O. & Hurst, L. D. The signature of selection mediated by expression on human genes. Genome Res. 13, 2260–2264 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. 92

    Andersson, M. Sexual Selection (Princeton Univ. Press, 1994).

    Google Scholar 

  93. 93

    Lande, R. Models of speciation by sexual selection on polygenic traits. Proc. Natl Acad. Sci. USA 78, 3721–3725 (1981).

    CAS  Article  Google Scholar 

  94. 94

    Proschel, M., Zhang, Z. & Parsch, J. Widespread adaptive evolution of Drosophila genes with sex-biased expression. Genetics 174, 893–900 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Khaitovich, P. et al. Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science 309, 1850–1854 (2005).

    CAS  Article  Google Scholar 

  96. 96

    Cutter, A. D. & Ward, S. Sexual and temporal dynamics of molecular evolution in C. elegans development. Mol. Biol. Evol. 22, 178–188 (2005).

    CAS  Article  Google Scholar 

  97. 97

    Gershoni, M. & Pietrokovski, S. Reduced selection and accumulation of deleterious mutations in genes expressed exclusively in men. Nat. Commun. 5 4438 (2014).

    CAS  Article  Google Scholar 

  98. 98

    Dapper, A. L., Wade, M. J. The evolution of sperm competition genes: the effect of mating system on levels of genetic variation within and between species. Evolution 70, 502–511 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. 99

    Cobbs, G. Multiple inseminations and male sexual selection in natural populations of Drosophila pseudoobscura. Am. Nat. 111, 641–656 (1977).

    Article  Google Scholar 

  100. 100

    Smith, N. G. C. & Eyre-Walker, A. Adaptive protein evolution in Drosophila. Nature 415, 1022–1024 (2002).

    CAS  Article  Google Scholar 

  101. 101

    Wyman, M. J., Cutter, A. D. & Rowe, L. Gene duplication in the evolution of sexual dimorphism. Evolution 66, 1556–1566 (2012).

    Article  Google Scholar 

  102. 102

    Montgomery, S. H. & Mank, J. E. Inferring regulatory change from gene expression: the confounding effects of tissue scaling. Mol. Ecol. http://dx.doi.org/10.1111/mec.13824 (2016).

  103. 103

    Voje, K. L. Scaling of morphological characters across trait type, sex, and environment: a meta-analysis of static allometries. Am. Nat. 187, 89–98 (2016).

    Article  Google Scholar 

  104. 104

    Gur, R. C. et al. Sex differences in brain gray and white matter in healthy young adults: correlations with cognitive performance. J. Neurosci. 15, 4065–4072 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

I am extremely grateful for generous support from the European Research Council (grant agreements 260233 and 680951), and discussion of these topics over the past few years with members of the lab, particularly R. Dean, A. Wright, V. Oostra, S. Montgomery and N. Block.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Judith E. Mank.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mank, J. The transcriptional architecture of phenotypic dimorphism. Nat Ecol Evol 1, 0006 (2017). https://doi.org/10.1038/s41559-016-0006

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing