Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phylogenetic and environmental context of a Tournaisian tetrapod fauna

Abstract

The end-Devonian to mid-Mississippian time interval has long been known for its depauperate palaeontological record, especially for tetrapods. This interval encapsulates the time of increasing terrestriality among tetrapods, but only two Tournaisian localities previously produced tetrapod fossils. Here we describe five new Tournaisian tetrapods (Perittodusapsconditus, Koilopsherma, Ossiraruskierani, Diploradusaustiumensis and Aytonerpetonmicrops) from two localities in their environmental context. A phylogenetic analysis retrieved three taxa as stem tetrapods, interspersed among Devonian and Carboniferous forms, and two as stem amphibians, suggesting a deep split among crown tetrapods. We also illustrate new tetrapod specimens from these and additional localities in the Scottish Borders region. The new taxa and specimens suggest that tetrapod diversification was well established by the Tournaisian. Sedimentary evidence indicates that the tetrapod fossils are usually associated with sandy siltstones overlying wetland palaeosols. Tetrapods were probably living on vegetated surfaces that were subsequently flooded. We show that atmospheric oxygen levels were stable across the Devonian/Carboniferous boundary, and did not inhibit the evolution of terrestriality. This wealth of tetrapods from Tournaisian localities highlights the potential for discoveries elsewhere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: New tetrapod taxa from Willie’s Hole.
Figure 2: Ossirarus kierani gen. et sp. nov. (UMZC 2016.3) from Burnmouth Ross end cliffs.
Figure 3: Diploradus austiumensis gen. et sp. nov. (UMZC 2015.30) from Burnmouth Ross end cliffs.
Figure 4: Aytonerpeton microps gen. et sp. nov. (UMZC 2015.46b) from Burnmouth Ross end shore exposure.
Figure 5: Phylogenetic analysis of early tetrapods.
Figure 6: Burnmouth sedimentary log showing palaeosol and tetrapod fossil distribution.

Similar content being viewed by others

References

  1. Coates, M. I & Clack, J. A. Romer’s Gap – tetrapod origins and terrestriality. Bull. Mus. Nat. Hist. Nat. 17, 373–388 (1995).

    Google Scholar 

  2. Smithson, T. R., Wood, S. P., Marshall, J. E. A. & Clack, J. A. Earliest Carboniferous tetrapod and arthropod faunas from Scotland populate Romer’s Gap. Proc. Natl Acad. Sci. USA 109, 4532–4537 (2012).

    Article  CAS  Google Scholar 

  3. Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J.-X. The ICS International Chronostratigraphical Chart v. 2016/04 (ICS, 2013); http://stratigraphy.org/ICSchart/ChronostratChart2016-04.pdf

    Google Scholar 

  4. Wood, S. P., Panchen, A. L. & Smithson, T. R. A terrestrial fauna from the Scottish Lower Carboniferous. Nature 314, 355–356 (1985).

    Article  Google Scholar 

  5. Rolfe, W. D. I., Clarkson, E. N. K. & Panchen, A. L. (eds) Volcanism and early terrestrial biotas. Trans. R. Soc. Edinb. 84, 175–464 (1994).

    Google Scholar 

  6. Milner, A. R. & Sequeira, S. E. K. The temnospondyl amphibians from the Viséan of East Kirkton, West Lothian, Scotland. Trans. R. Soc. Edinb. 84, 331–362 (1994).

    Google Scholar 

  7. Smithson, T. R., Carroll, R. L., Panchen, A. L. & Andrews, S. M. Westlothiana lizziae from the Viséan of East Kirkton, West Lothian, Scotland. Trans. R. Soc. Edinb. 84, 417–431 (1994).

    Google Scholar 

  8. Clack, J. A. Gaining Ground: The Origin and Evolution of Tetrapods 2nd edn (Indiana Univ. Press, 2012).

    Google Scholar 

  9. Ward, P. D., Labandeira, C., Laurin, M. & Berner, R. A. Confirmation of Romer’s Gap as a low oxygen interval constraining the timing of initial arthropod and vertebrate terrestrialisation. Proc. Natl Acad. Sci. USA 103, 16818–16822 (2006).

    Article  CAS  Google Scholar 

  10. Carroll, R. L., Belt, E. S., Dineley, D. L., Baird, D. & McGregor, D. C . Excursion A59, Vertebrate palaeontology of Eastern Canada. In 24th Int. Geol. Congr. 1–113 (1972).

  11. Clack, J. A. & Carroll, R. L. in Amphibian Biology Vol. 4 (eds Heatwole, H. & Carroll, R. L. ) 1030–1043 (Surrey Beatty, 2000).

    Google Scholar 

  12. Anderson, J. S., Smithson, T. R., Mansky, C. F., Meyer, T. & Clack, J. A. A diverse tetrapod fauna at the base of Romer’s Gap. PLoS ONE 10, e0125446 (2015).

    Article  Google Scholar 

  13. Clack, J. A. An early tetrapod from ‘Romer’s Gap’. Nature 418, 72–76 (2002).

    Article  CAS  Google Scholar 

  14. Clack, J. A. & Finney, S. M. Pederpes finneyae, an articulated tetrapod from the Tournaisian of western Scotland. J. Syst. Palaeontol. 2, 311–346 (2005).

    Article  Google Scholar 

  15. Kearsey, T. I. et al. The terrestrial landscapes of tetrapod evolution in earliest Carboniferous seasonal wetlands of SE Scotland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 457, 52–69 (2016).

    Article  Google Scholar 

  16. Bennett, C. E. et al. Early Mississippian sandy siltstones preserve rare vertebrate fossils in seasonal flooding episodes. Sedimentology 63, 1677–1700 (2016).

    Article  Google Scholar 

  17. Clack, J. A., Ahlberg P. E., Blom H. & Finney S. M. A new genus of Devonian tetrapod from East Greenland, with new information on the lower jaw of Ichthyostega . Palaeontology 55, 73–86 (2012).

    Article  Google Scholar 

  18. Milner, A. C. & Lindsay, W. Postcranial remains of Baphetes and their bearing on the relationships of the Baphetidae (= Loxommatidae). Zool. J. Linn. Soc. 122, 211–235 (1998).

    Article  Google Scholar 

  19. Clack, J. A. The dermal skull roof of Acanthostega, an early tetrapod from the Late Devonian. Trans. R. Soc. Edinb. 93, 17–33 (2002).

    Article  Google Scholar 

  20. Jarvik, E. The Devonian tetrapod Ichthyostega . Fossils Strata 40, 1–206 (1996).

    Google Scholar 

  21. Smithson, T. R. The cranial morphology of Greererpeton burkemorani (Amphibia: Temnospondyli). Zool. J. Linn. Soc. 76, 29–90 (1982).

    Article  Google Scholar 

  22. Lombard, R. E. & Bolt, J. R. Sigournea multidentata, a new stem tetrapod from the Upper Mississippian of Iowa, USA. J. Palaeontol. 80, 717–725 (2006).

    Article  Google Scholar 

  23. Bolt J. R. & Lombard, R. E. The mandible of the primitive tetrapod Greererpeton, and the early evolution of the tetrapod lower jaw. J. Palaeontol. 75, 1016–1042 (2001).

    Article  Google Scholar 

  24. Godfrey, S. J. Ontogenetic changes in the skull of the Carboniferous tetrapod Greererpeton burkemorani Romer 1969. Phil. Trans. R. Soc. Lond. B 323, 135–153 (1989a).

    Article  Google Scholar 

  25. Hook, R. W. Colosteus scutellatus (Newberry) a primitive temnospondyl amphibian from the Middle Pennsylvanian of Linton, Ohio. Am. Mus. Novit. 2770, 1–41 (1983).

    Google Scholar 

  26. Godfrey, S. J. The postcranial skeletal anatomy of the Carboniferous tetrapod Greererpeton burkemorani Romer 1969. Phil. Trans. Roy. Soc. Lond. B 323, 75–133 (1989b).

    Article  Google Scholar 

  27. Wilkinson, M. Coping with abundant missing entries in phylogenetic inference using parsimony. Syst. Biol. 44, 501–514 (1995).

    Article  Google Scholar 

  28. Goloboff, P. A. Estimating character weights during tree search. Cladistics 9, 83–89 (1993).

    Article  Google Scholar 

  29. Ruta, M., Coates, M. I. & Quicke, D. L. J. Early tetrapod relationships revisited. Biol. Rev. 78, 251–345 (2003).

    Article  Google Scholar 

  30. Ruta, M. & Clack, J. A. A review of Silvanerpeton miripedes, a stem amniote from the Lower Carboniferous of East Kirkton, West Lothian, Scotland. Trans. R. Soc. Edinb. 97, 31–63 (2006).

    Article  Google Scholar 

  31. Klembara J., Clack, J. A. & Milner A. R. Cranial anatomy, ontogeny, and relationships of the Late Carboniferous tetrapod Gephyrostegus bohemicus Jaekel, 1902. J. Vertebr. Paleontol. 34, 774–792. (2014).

    Article  Google Scholar 

  32. Laurin, M. The evolution of body size, Cope's rule and the origin of amniotes. Syst. Biol. 53, 594–622 (2004).

    Article  Google Scholar 

  33. Marjanović, D. & Laurin, M. The origin(s) of extant amphibians: a review with emphasis on the “lepospondyl hypothesis”. Geodiversitas 35, 207–272. (2013).

    Article  Google Scholar 

  34. Greig, D. C. Geology of the Eyemouth District: Memoir for 1:50000 Geological Sheet 34 Mem. Geol. Surv. GB (Scotland, sheet 34) (1988 ).

    Google Scholar 

  35. Garcia, W. J., Storrs, G. W. & Greb, S. F. The Hancock County tetrapod locality: a new Mississippian (Chesterian) wetlands fauna from western Kentucky (USA). Geol. Soc. Am. S. 399, 155–167 (2006).

    Google Scholar 

  36. Davies, N. S. & Gibling, M. R. The sedimentary record of Carboniferous rivers: Continuing influence of land plant evolution on alluvial processes and Palaeozoic ecosystems. Earth-Sci. Rev. 120, 40–79 (2013).

    Article  Google Scholar 

  37. Corenblit, D., Davies, N. S., Steiger, J., Gibling, M. R. & Bornette, G. Considering river structure and stability in the light of evolution: feedbacks between riparian vegetation and hydrogeomorphology. Earth Surf. Proc. Land. 40, 189–207 (2015).

    Article  Google Scholar 

  38. Mansky, C. F. & Lucas, S. G. Romer’s Gap revisited: continental assemblages and ichno-assemblages from the basal Carboniferous of Blue Beach, Nova Scotia, Canada. Bull. New Mex. Mus. Nat. Hist. 60, 244–273 (2013).

    Google Scholar 

  39. Sallan, L. C. & Coates, M. I. End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates. Proc. Natl Acad. Sci. USA 107, 10131–10135 (2010).

    Article  CAS  Google Scholar 

  40. Smithson, T. R., Richards, K. R. & Clack, J. A. Lungfish diversity in Romer’s Gap: reaction to the end-Devonian extinction. Palaeontology 59, 29–44 (2016).

    Article  Google Scholar 

  41. Richards, K. R. et al. A new fauna of early Carboniferous chondrichthyans from the Scottish Borders. In 59th Ann. Meeting Palaeontological Assoc. (2015); http://www.palass.org/meetings-events/annual-meeting/2015/annual-meeting-2015-cardiff-poster-abstracts

  42. Hedges, S. B., Marin, J., Suleski, M., Paymer, M. & Kumar, S. Tree of Life reveals clock-like speciation and diversification. Mol. Biol. Evol. 32, 835–845 (2015).

    Article  CAS  Google Scholar 

  43. Kumar S. & Hedges S. B. TimeTree2: species divergence times on the iPhone. Bioinformatics 27, 2023–2024 (2011).

    Article  CAS  Google Scholar 

  44. Clack, J. A., Witzmann, F., Snyder D. & Mìller, J. A colosteid-like early tetrapod from the St. Louis Limestone (Early Carboniferous, Meramecian), St. Louis, Missouri, USA. Fieldiana Life Earth Sci. 5, 17–39 (2012).

    Article  Google Scholar 

  45. Sallan L. C. & Gallimberti, A. K. Body-size reduction in vertebrates following the end-Devonian mass extinction. Science 350, 812–815 (2015).

    Article  CAS  Google Scholar 

  46. Standen, E. M., Du, T. Y. & Larsson, C. E. Developmental plasticity and the origin of tetrapods. Nature 513, 54–58 (2014).

    Article  CAS  Google Scholar 

  47. Ahlberg, P. E. & Clack, J. A. Lower jaws, lower tetrapods: a review based on the Devonian tetrapod Acanthostega . Trans. R. Soc. Edinb . 89, 11–46 (1998).

    Article  Google Scholar 

  48. Clack, J. A. The Scottish Carboniferous tetrapod Crassigyrinus scoticus (Lydekker)—cranial anatomy and relationships. Trans. R. Soc. Edinb. 88, 127–142 (1998).

    Article  Google Scholar 

  49. Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT, a free program for phylogenetic analysis. Cladistics 24, 1–13 (2008).

    Article  Google Scholar 

  50. Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (Chapman and Hall, 1979).

    Google Scholar 

  51. Efron, B. in Breakthroughs in Statistics (eds Kotz, S & Johnson, N.L.) 569–593 (Springer, 1997).

    Google Scholar 

  52. Carpenter, D. K., Falcon-Lang, H. J., Benton, M. J. & Henderson, E. Carboniferous (Tournaisian) fish assemblages from the Isle of Bute, Scotland: systematics and palaeoecology. Palaeontology 57, 1215–1240 (2014).

    Google Scholar 

  53. Friedman, M. & Sallan, L. C. Five hundred million years of extinction and recovery: a Phanerozoic survey of large-scale diversity patterns in fishes. Palaeontology 55, 707–742 (2012).

    Article  Google Scholar 

  54. Andrews, J. E., Turner, M. S., Nabi, G. & Spiro, B. The anatomy of an early Dinantian terraced floodplain: palaeo-environment and early diagenesis. Sedimentology 38, 271–287 (1991).

    Article  Google Scholar 

  55. Turner, M.S. Geochemistry and Diagenesis of Basal Carboniferous Dolostones from Southern Scotland PhD thesis, Univ. East Anglia (1991).

    Google Scholar 

  56. Belt, E. S., Freshney, E. C. & Read, W. A. Sedimentology of Carboniferous cementstone facies, British Isles and Eastern Canada. J. Geol. 75, 711–721. (1967).

    Article  Google Scholar 

  57. Scott, W. B. The Sedimentology of the Cementstone Group in the Tweed Basin: Burnmouth and the Merse of Berwick PhD thesis, Sunderland Polytechnic (1971).

    Google Scholar 

  58. Scott, W. B. Nodular carbonates in the Lower Carboniferous, Cementstone Group of the Tweed Embayment, Berwickshire: evidence for a former sulphate evaporite facies. Scot. J. Geol. 22, 325–345 (1986).

    Article  CAS  Google Scholar 

  59. Barnet, A. J., Wright, V. P. & Crowley, S. F. Recognition and significance of paludal dolomites: Late Mississippian, Kentucky, USA. In Linking Diagenesis to Sequence Stratigraphy (eds Morad, S., Ketzer, J. M. & De Ros, L. F. ) 477–500 (Special Publication 45 of the IAS, John Wiley & Sons, 2012).

    Google Scholar 

  60. Muchez, P. & Viaene, W. Dolocretes from the Lower Carboniferous of the Campine-Brabant Basin, Belgium. Pedologie 37, 187–202 (1987).

    Google Scholar 

  61. Searl, A. Pedogenic dolomites from the Oolite Group (Lower Carboniferous) South Wales. Geol. J. 23,157–169 (1988).

    Article  CAS  Google Scholar 

  62. Vanstone, S. D. Early Carboniferous (Mississippian) palaeosols from southwest Britain: influence of climatic change on soil development. J. Sediment. Res. 61, 445–457 (1991).

    Google Scholar 

  63. Wright, V. P., Vanstone, S. D. & Marshall, J. D. Contrasting flooding histories of Mississippian carbonate platforms revealed by marine alteration effects in palaeosols. Sedimentology 44, 825–842 (1997).

    Article  CAS  Google Scholar 

  64. Wood, G., Gabriel, A.M. & Lawson, J.C. Palynological techniques – processing and microscopy. In Palynology: Principles and Applications Vol. 1 (eds Jansonius, J. & McGregor, D. C. ) 29–50 (American Association of Stratigraphic Palynologists Foundation, 1996).

    Google Scholar 

  65. American Society for Testing and Materials (ASTM) in Annual Book of ASTM Standards Section 5: Petroleum Products, Lubricants, and Their Fossil Fuels Vol. 05.06, D2799-13 (ASTM International, 2013); http://www.astm.org/Standards/D2799.htm

  66. Hansen, K. W. & Wallmann, K. Cretaceous and Cenozoic evolution of seawater composition, atmospheric O2 and CO2: A model perspective. Am. J. Sci. 303, 94–148 (2003).

    Article  CAS  Google Scholar 

  67. Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004).

    Article  CAS  Google Scholar 

  68. Arvidson, R.S., Mackenzie, F.T. & Guidry, M. Magic: A Phanerozoic model for the geochemical cycling of major rock-forming components. Am. J. Sci. 306, 135–190 (2006).

    Article  CAS  Google Scholar 

  69. Berner, R. A. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2 . Geochim. Cosmochim. Ac. 70, 5653–5664 (2006).

    Article  CAS  Google Scholar 

  70. Berner, R. A. Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model. Am. J. Sci. 309, 603–606 (2009).

    Article  CAS  Google Scholar 

  71. Robinson, J. M. Phanerozoic atmospheric reconstructions: a terrestrial perspective. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 51–62 (1991).

    Article  Google Scholar 

  72. Scott, A. C. & Glasspool, I. J. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc. Natl Acad. Sci. USA 103, 10861–10865 (2006).

    Article  CAS  Google Scholar 

  73. Glasspool, I. J. & Scott, A. C. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat. Geosci. 3, 627–630 (2010).

    Article  CAS  Google Scholar 

  74. Glasspool, I. J., Scott, A. C., Waltham, D., Pronina, N. & Shao, L. The impact of fire on the Late Paleozoic Earth system. Front. Plant Sci. 6, 1–13 (2015).

    Article  Google Scholar 

  75. Belcher, C. M., Yearsley, J. M., Hadden, R. M., McElwain, J. C. & Guillermo, R. Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proc. Natl Acad. Sci. USA 107, 22448–22453 (2010).

    Article  CAS  Google Scholar 

  76. Tyson, R. V. Sedimentary Organic Matter (Chapman & Hall, 1995).

    Book  Google Scholar 

  77. Scott, A. J. & Glasspool, I. J. Observations and experiments on the origin and formation of the inertinite group macerals. Int. J. Coal Geol., 70, 53–66. (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from NERC consortium grants NE/J022713/1 (Cambridge), NE/J020729/1 (Leicester), NE/J021067/1 (BGS), NE/J020621/1 (NMS) and NE/J021091/1 (Southampton). We thank the following for their support and contributions: the late S. Wood and M. Wood for discovery of and access to collections; O. Kieran and B. Kieran and the Burnmouth community for support for the project; M. Browne for field assistance and information on stratigraphy; M. Lowe for access to UMZC collections; S. Finney for field assistance, conservation advice and preparation of Koilops; V. Carrió for conservation and preparation of NMS specimens; J. Sherwin for stratigraphy and field assistance; and S. Akbari (Southampton) for contribution to palynological processing. T.I.K. and D.M. publish with the permission of the Executive Director, British Geological Survey (NERC). A. Brown and C. MacFadyen of Scottish Natural Heritage gave permission to collect at sites in their care and P. Bancks, from The Crown Estates Office in Edinburgh, gave permission to collect on Crown land. PRISM, the Isaac Newton Trust Fund (Trinity College, Cambridge), the Crotch Fund (UMZC) and an anonymous donor provided funding for the purchase of specimens. This is a contribution to IGCP project 596.

Author information

Authors and Affiliations

Authors

Contributions

J.A.C. was lead principal investigator. T.R.S., J.AC., B.K.A.O. and K.Z.S. collected, described and analysed the tetrapod specimens. C.E.B., T.I.K., S.J.D. and D.M. contributed to the stratigraphical, sedimentological and environmental studies. J.E.A.M., D.K.C., and E.J.R. contributed to the charcoal, palynological and stratigraphical studies. M.R. and J.A.C. contributed to the phylogenetic analysis. A.J.R. contributed information on the arthropods. S.A.W. provided additional work on micro-CT scan data. A.J.R., S.A.W. and N.C.F. organized the Willie’s Hole excavation that provided the sedimentological information. All authors contributed to discussion, preparation and writing of the paper.

Corresponding author

Correspondence to Jennifer A. Clack.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary information

Supplementary Figures 1–9, Supplementary Data and Supplementary Table 1 (PDF 7070 kb)

Supplementary Video 1

Video of an Aytonerpeton whole specimen (MOV 5858 kb)

Supplementary Video 2

Video of an Aytonerpeton skull (MOV 12360 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clack, J., Bennett, C., Carpenter, D. et al. Phylogenetic and environmental context of a Tournaisian tetrapod fauna. Nat Ecol Evol 1, 0002 (2017). https://doi.org/10.1038/s41559-016-0002

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-016-0002

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene