Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tipping points in the dynamics of speciation

Abstract

Speciation can be gradual or sudden and involve few or many genetic changes. Inferring the processes generating such patterns is difficult, and may require consideration of emergent and non-linear properties of speciation, such as when small changes at tipping points have large effects on differentiation. Tipping points involve positive feedback and indirect selection stemming from associations between genomic regions, bi-stability due to effects of initial conditions and evolutionary history, and dependence on modularity of system components. These features are associated with sudden ‘regime shifts’ in other cellular, ecological, and societal systems. Thus, tools used to understand other complex systems could be fruitfully applied in speciation research.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Empirical studies of the speciation continuum and the dynamics of speciation.
Figure 2: Gradual and sudden dynamics of speciation in the model by Flaxman et al.5
Figure 3: Difficulties with quantifying patterns of differentiation during speciation.

References

  1. 1

    Gould, S. J. The Structure of Evolutionary Theory (Belknap Press, 2002).

    Google Scholar 

  2. 2

    Darwin, C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (John Murray, 1859).

    Google Scholar 

  3. 3

    Gavrilets, S. Perspective: Models of speciation: What have we learned in 40 years? Evolution 57, 2197–2215 (2003). A review of theoretical models of speciation with a focus on those utilizing the framework of genetic incompatibilities.

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4

    Gavrilets, S. & Losos, J. B. Adaptive radiation: Contrasting theory with data. Science 323, 732–737 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5

    Flaxman, S., Walchoder, A., Feder, J. L. & Nosil, P. Theoretical models of the influence of genomic architecture on speciation. Mol. Ecol. 23, 4074–4088 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  6. 6

    Coyne, J. A. & Orr, H. A. Speciation 1st edn (Sinauer Associates, 2004).

    Google Scholar 

  7. 7

    Seehausen, O. et al. Speciation through sensory drive in cichlid fish. Nature 455, 620–623 (2008). A demonstration of speciation via natural and sexual selection in cichlid fish, with emphasis on different degrees of differentiation during the process.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8

    Berner, D., Grandchamp, A. C. & Hendry, A. P. Variable progress toward ecological speciation in parapatry: stickleback across eight lake-stream transitions. Evolution 63, 1740–1753 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  9. 9

    Feulner, P. G. D. et al. Genomics of divergence along a continuum of parapatric population differentiation. PLoS Genet. 11, e1005414 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. 10

    Gagnaire, P. A., Pavey, S. A., Normandeau, E. & Bernatchez, L. The genetic architecture of reproductive isolation during speciation-with-gene-flow in lake whitefish species pairs assessed by rad sequencing. Evolution 67, 2483–2497 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  11. 11

    Peccoud, J., Ollivier, A., Plantegenest, M. & Simon, J. C. A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. Proc. Natl Acad. Sci. USA 106, 7495–7500 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12

    Martin, S. H. et al. Genome-wide evidence for speciation with gene flow in Heliconius butterflies Genome Res. 23, 1817–1828 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Kronforst, M. R. et al. Hybridization reveals the evolving genomic architecture of speciation. Cell Rep. 5, 666–677 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Burri, R. et al. Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers. Genome Res. 25, 1656–1665 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Twomey, E., Vestergaard, J. S., Venegas, P. J. & Summers, K. Mimetic divergence and the speciation continuum in the mimic poison frog Ranitomeya imitator. Am. Nat. 187, 205–224 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  16. 16

    Mallet, J., Beltran, M., Neukirchen, W. & Linares, M. Natural hybridization in heliconiine butterflies: the species boundary as a continuum. BMC Evol. Biol. 7, 28 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Lamichhaney, S. et al. Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring. Proc. Natl Acad. Sci. USA 109, 19345–19350 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18

    Rockman, M. V. The QTN program and the alleles that matter for evolution: all that's gold does not glitter. Evolution 66, 1–17 (2012). A perspective piece arguing that much of adaptation and evolution may stem from multiple loci with alleles of small effect.

    PubMed  Article  PubMed Central  Google Scholar 

  19. 19

    Yang, J. et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nat. Genet. 43, 519–544 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Carneiro, M. et al. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science 345, 1074–1079 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21

    Buckler, E. S. et al. The genetic architecture of maize flowering time. Science 325, 714–718 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22

    Ellison, C. K., Wiley, C. & Shaw, K. L. The genetics of speciation: genes of small effect underlie sexual isolation in the Hawaiian cricket Laupala. J. Evol. Biol. 24, 1110–1119 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23

    Fishman, L., Kelly, A. J. & Willis, J. H. Minor quantitative trait loci underlie floral traits associated with mating system divergence in Mimulus. Evolution 56, 2138–2155 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24

    Brawand, D. et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513, 375–381 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25

    Soria-Carrasco, V. et al. Stick insect genomes reveal natural selection's role in parallel speciation. Science 344, 738–742 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26

    Gompert, Z. et al. Experimental evidence for ecological selection on genome variation in the wild. Ecol. Lett. 17, 369–379, http://dx.doi.org/10.1111/ele.12238 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  27. 27

    Eldredge, N. & Gould, S. J. in Models in Paleobiology (ed. Schopf, T. J. M. ) 82–115 (1972).

    Google Scholar 

  28. 28

    Simpson, G. G. Tempo and Mode in Evolution (Columbia Univ. Press, 1944).

    Google Scholar 

  29. 29

    Simpson, G. G. The Major Features of Evolution (Columbia Univ. Press, 1953).

    Book  Google Scholar 

  30. 30

    Mayr, E. Animal Species and Evolution (Harvard Univ. Press, 1963).

    Book  Google Scholar 

  31. 31

    Mayr, E. in Evolution as a Process (eds Huxley, J., Hardy, A. C. & Ford, E. B. ) (Allen & Unwin, 1954).

    Google Scholar 

  32. 32

    Barton, N. H. & Charlesworth, B. Genetic revolutions, founder effects, and speciation. Annu. Rev. Ecol. Syst. 15, 133–164 (1984).

    Article  Google Scholar 

  33. 33

    Gavrilets, S. Fitness Landscapes and the Origin of Species Vol. 41 (Princeton Univ. Press, 2004).

    Google Scholar 

  34. 34

    Kirkpatrick, M. & Barton, N. Chromosome inversions, local adaptation and speciation. Genetics 173, 419–434 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Dietrich, M. R. Richard Goldschmidt: hopeful monsters and other ‘heresies’. Nat. Rev. Genet. 4, 68–74 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36

    Chouard, T. Evolution: Revenge of the hopeful monster. Nature 463, 864–867 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37

    Goldschmitdt, R. The Material Basis of Evolution (Yale Univ. Press 1940).

    Google Scholar 

  38. 38

    Colosimo, P. F. et al. Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science 307, 1928–1933 (2005). An empirical study showing repeated adaptation to freshwater via a gene of large effect.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    Nadeau, N. J. et al. Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato. Genome Res. 24, 1316–1333 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Nadeau, N. J. et al. Genomic islands of divergence in hybridizing Heliconius butterflies identified by large-scale targeted sequencing. Phil. Trans. R. Soc. B 367, 343–353 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41

    Hopkins, R. & Rausher, M. D. Pollinator-mediated selection on flower color allele drives reinforcement. Science 335, 1090–1092 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42

    Feder, J. L., Egan, S. P. & Nosil, P. The genomics of speciation-with-gene-flow. Trends Genet. 28, 342–350 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43

    Noor, M. A. F., Grams, K. L., Bertucci, L. A. & Reiland, J. Chromosomal inversions and the reproductive isolation of species. Proc. Natl Acad. Sci. USA 98, 12084–12088 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44

    Rieseberg, L. H., Whitton, J. & Gardner, K. Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species. Genetics 152, 713–727 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Poelstra, J. W. et al. The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. Science 344, 1410–1414 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46

    McGaugh, S. E. & Noor, M. A. F. Genomic impacts of chromosomal inversions in parapatric Drosophila species. Phil. Trans. R. Soc. B 367, 422–429 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  47. 47

    Seehausen, O. et al. Genomics and the origin of species. Nat. Rev. Genet. 15, 176–192 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48

    Orr, H. A. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52, 935–949 (1998).

    PubMed  Article  PubMed Central  Google Scholar 

  49. 49

    Orr, H. A. The genetic theory of adaptation: A brief history. Nat. Rev. Genet. 6, 119–127 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50

    Yeaman, S. & Otto, S. P. Establishment and maintenance of adaptive genetic divergence under migration, selection, and drift. Evolution 65, 2123–2129 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  51. 51

    Yeaman, S. & Whitlock, M. C. The genetic architecture of adaptation under migration-selection balance. Evolution 65, 1897–1911 (2011). Theoretical work on the evolution of genetic architecture when populations are exchanging genes with one another, contrasting with population genetics theory based on evolution within single, isolated populations.

    PubMed  Article  PubMed Central  Google Scholar 

  52. 52

    Orr, H. A. The population-genetics of speciation — the evolution of hybrid incompatibilities. Genetics 139, 1805–1813 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Orr, H. A. The genetic basis of reproductive isolation: Insights from Drosophila. Proc. Natl Acad. Sci. USA 102, 6522–6526 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54

    Matute, D. R., Butler, I. A., Turissini, D. A. & Coyne, J. A. A test of the snowball theory for the rate of evolution of hybrid incompatibilities. Science 329, 1518–1521 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55

    Moyle, L. C. & Nakazato, T. Hybrid incompatibility “snowballs” between solanum species. Science 329, 1521–1523 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56

    Dieckmann, U. & Doebeli, M. On the origin of species by sympatric speciation. Nature 400, 354–357 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57

    Dieckmann, U., Doebeli, M., Metz, J. A. J. & Tautz, D. Adaptive Speciation (Cambridge Univ. Press, Cambridge, 2004).

    Book  Google Scholar 

  58. 58

    Mayr, E. Systematics and the Origin of Species (Columbia Univ. Press, 1942).

    Google Scholar 

  59. 59

    Nosil, P. & Schluter, D. The genes underlying the process of speciation. Trends Ecol. Evol. 26, 160–167 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  60. 60

    Servedio, M. R. & Saetre, G. P. Speciation as a positive feedback loop between postzygotic and prezygotic barriers to gene flow. Proc. R. Soc. B 270, 1473–1479 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  61. 61

    Crespi, B. J. Vicious circles: positive feedback in major evolutionary and ecological transitions. Trends Ecol. Evol. 19, 627–633 (2004). A review of how positive feedback may drive major biological transitions, in cases ranging from speciation to social evolution.

    PubMed  Article  PubMed Central  Google Scholar 

  62. 62

    Schwander, T., Vuilleumier, S., Dubman, J. & Crespi, B. J. Positive feedback in the transition from sexual reproduction to parthenogenesis. Proc. R. Soc. B 277, 1435–1442 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  63. 63

    Lehtonen, J. & Kokko, H. Positive feedback and alternative stable states in inbreeding, cooperation, sex roles and other evolutionary processes. Phil. Trans. R. Soc. B 367, 211–221 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  64. 64

    Rasanen, K. & Hendry, A. P. Disentangling interactions between adaptive divergence and gene flow when ecology drives diversification. Ecol. Lett. 11, 624–636 (2008). An overview of the interactions, and potential feedback, between adaptive divergence and gene flow.

    PubMed  Article  PubMed Central  Google Scholar 

  65. 65

    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    CAS  Article  Google Scholar 

  66. 66

    Scheffer, M., Carpenter, S. R., Dakos, V. & van Nes, E. H. Generic indicators of ecological resilience: inferring the chance of a critical transition. Ann. Rev. Ecol. Evol. System. 46, 145–167 (2015).

    Article  Google Scholar 

  67. 67

    Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012). A review of critical transitions and tipping points in complex systems, with an emphasis on the potential to predict tipping points in advance using early warning signs.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68

    Kirkpatrick, M. & Ravigné, V. Speciation by natural and sexual selection: Models and experiments. Am. Nat. 159, S22–S35 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  69. 69

    Carneiro, M. & Hartl, D. L. Adaptive landscapes and protein evolution. Proc. Natl Acad. Sci. USA 107, 1747–1751 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70

    Poelwijk, F. J., Kiviet, D. J., Weinreich, D. M. & Tans, S. J. Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445, 383–386 (2007).

    CAS  Article  Google Scholar 

  71. 71

    Weinreich, D. M., Delaney, N. F., DePristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).

    CAS  Article  Google Scholar 

  72. 72

    Barton, N. H. Multilocus clines. Evolution 37, 454–471 (1983).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73

    Kruuk, L. E. B., Baird, S. J. E., Gale, K. S. & Barton, N. H. A comparison of multilocus clines maintained by environmental adaptation or by selection against hybrids. Genetics 153, 1959–1971 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Hendry, A. P. Selection against migrants contributes to the rapid evolution of ecologically dependent reproductive isolation. Evol. Ecol. Res. 6, 1219–1236 (2004).

    Google Scholar 

  75. 75

    Barton, N. H. & de Cara, M. A. R. The evolution of strong reproductive isolation. Evolution 63, 1171–1190 (2009). A theoretical model showing how different reproductive barriers can become coupled in their effects to drive strong reproductive isolation.

    PubMed  Article  PubMed Central  Google Scholar 

  76. 76

    Rausher, M. D. & Delph, L. F. Commentary: When does understanding phenotypic evolution require identification of the underlying genes? Evolution 69, 1655–1664 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  77. 77

    Kitano, H. Systems biology: A brief overview. Science 295, 1662–1664 (2002). A brief overview of systems thinking and emergent properties in biology.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78

    Novikoff, A. B. The concept of integrative levels and biology. Science 101, 209–215 (1945).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79

    Benfey, P. N. & Mitchell-Olds, T. Perspective: From genotype to phenotype: Systems biology meets natural variation. Science 320, 495–497 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80

    Hoffmann, A. A. & Rieseberg, L. H. Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation? Annu. Rev. Ecol. Evol. Syst. 39, 21–42 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  81. 81

    Hanski, I. A. Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly. Proc. Natl Acad. Sci. USA 108, 14397–14404 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82

    Berner, D., Grandchamp, A.-C. & Hendry, A. P. Variable progress toward ecological speciation in parapatry: stickleback across eight lake-stream transitions. Evolution 63, 1740–1753 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  83. 83

    Pinho, C. & Hey, J. Divergence with gene flow: models and data. Ann. Rev. Ecol. Evol. System. 41, 215–230 (2010).

    Article  Google Scholar 

  84. 84

    Mallet, J., Meyer, A., Nosil, P. & Feder, J. L. Space, sympatry and speciation. J. Evol. Biol. 22, 2332–2341 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85

    Wu, C. The genic view of the process of speciation. J. Evol. Biol. 14, 851–865 (2001).

    Article  Google Scholar 

  86. 86

    Gompert, Z. et al. Admixture and the organization of genetic diversity in a butterfly species complex revealed through common and rare genetic variants. Mol. Ecol. 23, 4555–4573 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  87. 87

    Powell, T. H. Q. et al. Genetic divergence along the speciation continuum: the transition from host race to species in rhagoletis (Diptera: tephritidae). Evolution 67, 2561–2576 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  88. 88

    Bell, M. A. Implications of a fossil stickleback assemblage for Darwinian gradualism. J. Fish Biol. 75, 1977–1999 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89

    Purnell, M. A., Bell, M. A., Baines, D. C., Hart, P. J. B. & Travis, M. P. Correlated evolution and dietary change in fossil stickleback. Science 317, 1887–1887 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90

    Bell, G. Experimental macroevolution. Proc. R. Soc. B 283, 20152547 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  91. 91

    Mallet, J. A species definition for the modern synthesis. Trends Ecol. Evol. 10, 294–299 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92

    Barrett, R. D. H. & Hoekstra, H. E. Molecular spandrels: tests of adaptation at the genetic level. Nat. Rev. Genet. 12, 767–780 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93

    Feder, M. E. & Mitchell-Olds, T. Evolutionary and ecological functional genomics. Nat. Rev. Genet. 4, 651–657 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94

    Cruickshank, T. E. & Hahn, M. W. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol. Ecol. 23, 3133–3157 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  95. 95

    Barrett, R. D. H., Rogers, S. M. & Schluter, D. Natural selection on a major armor gene in threespine stickleback. Science 322, 255–257 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96

    Pespeni, M. H. et al. Evolutionary change during experimental ocean acidification. Proc. Natl Acad. Sci. USA 110, 6937–6942 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97

    Anderson, J. T., Lee, C.-R., Rushworth, C. A., Colautti, R. I. & Mitchell-Olds, T. Genetic trade-offs and conditional neutrality contribute to local adaptation. Mol. Ecol. 22, 699–708 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  98. 98

    Anderson, J. T., Lee, C. R. & Mitchell-Olds, T. Strong selection genome-wide enhances fitness trade-offs across environments and episodes of selection. Evolution 68, 16–31 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  99. 99

    Egan, S. P. et al. Experimental evidence of genome-wide impact of ecological selection during early stages of speciation-with-gene-flow. Ecol. Lett. 18, 817–825 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  100. 100

    Michel, A. P. et al. Widespread genomic divergence during sympatric speciation. Proc. Natl Acad. Sci. USA 107, 9724–9729 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101

    Zhou, X., Carbonetto, P. & Stephens, M. Polygenic modeling with Bayesian sparse linear mixed models. PLoS Genet. 9, e1003264 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102

    Hill, W. G. Applications of population genetics to animal breeding, from Wright, Fisher and Lush to genomic prediction. Genetics 196, 1–16 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103

    Orr, H. A. & Presgraves, D. C. Speciation by postzygotic isolation: forces, genes and molecules. Bioessays 22, 1085–1094 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  104. 104

    Renaut, S. et al. Genomic islands of divergence are not affected by geography of speciation in sunflowers. Nat. Commun. 4, 1827 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. 105

    Harmon, L. J., Schulte, J. A., Larson, A. & Losos, J. B. Tempo and mode of evolutionary radiation in iguanian lizards. Science 301, 961–964 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  106. 106

    Hartl, D. L. & Clark, A. G. Principles of Population Genetics 4th edn (Sinauer, 2007).

    Google Scholar 

  107. 107

    Flaxman, S. M., Wacholder, A. C., Feder, J. L. & Nosil, P. Data from: Theoretical models of the influence of genomic architecture on the dynamics of speciation. Dryad Digital Repository http://dx.doi.org/10.5061/dryad.kc596 (2014).

  108. 108

    Abbott, R. et al. Hybridization and speciation. J. Evol. Biol. 26, 229–246 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  109. 109

    Vuilleumier, S., Goudet, J. & Perrin, N. Evolution in heterogeneous populations from migration models to fixation probabilities. Theor. Popul. Biol. 78, 250–258 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

P.N. was supported by a University Research Fellowship from the Royal Society of London and the European Research Council (Grant NatHisGen R/129639); J.L.F. from grants from the National Science Foundation (USA) and the United States Department of Agriculture; and S.M.F. by NSF DEB award #1627483. For comments on earlier versions of this manuscript, we thank a graduate class on speciation at the University of Notre Dame and N. Bierne. We also thank N. Bierne for prompting the development of Box 1. R. Ribas drew all the figures.

Author information

Affiliations

Authors

Contributions

P.N., S.M.F., J.F. and Z.G. conceived the project and wrote the paper. S.M.F. ran the simulations and analysed them.

Corresponding author

Correspondence to Patrik Nosil.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Simulations and calculations used to generate results in Box 1. (PDF 699 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nosil, P., Feder, J., Flaxman, S. et al. Tipping points in the dynamics of speciation. Nat Ecol Evol 1, 0001 (2017). https://doi.org/10.1038/s41559-016-0001

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing