Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A 51,000-year-old engraved bone reveals Neanderthals’ capacity for symbolic behaviour


A Publisher Correction to this article was published on 20 July 2021

This article has been updated


While there is substantial evidence for art and symbolic behaviour in early Homo sapiens across Africa and Eurasia, similar evidence connected to Neanderthals is sparse and often contested in scientific debates. Each new discovery is thus crucial for our understanding of Neanderthals’ cognitive capacity. Here we report on the discovery of an at least 51,000-year-old engraved giant deer phalanx found at the former cave entrance of Einhornhöhle, northern Germany. The find comes from an apparent Middle Palaeolithic context that is linked to Neanderthals. The engraved bone demonstrates that conceptual imagination, as a prerequisite to compose individual lines into a coherent design, was present in Neanderthals. Therefore, Neanderthal’s awareness of symbolic meaning is very likely. Our findings show that Neanderthals were capable of creating symbolic expressions before H. sapiens arrived in Central Europe.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Engraved giant deer phalanx (inventory number 46999448-423) from a late Middle Palaeolithic context (layer 4.5) at Einhornhöhle, Lower Saxony, Germany.
Fig. 2: Plan and section drawing of the former cave entrance area at Einhornhöhle, including the chronostratigraphic assignment of individual radiometric samples.
Fig. 3: Technological details of the incised bone from Einhornhöhle.
Fig. 4: 3D digital microscopy images of the carved bone from Einhornhöhle.
Fig. 5: Micro-traces of lines 1–6.

Data availability

A 3D video of the engraved giant deer bone is available online. It is free to view at and can be downloaded in .mp4 file format under the CC-BY-SA 3.0 licence at A 3D model of the engraved giant deer bone can be downloaded in .stl data format under the CC-BY-SA 3.0 licence at Further datasets generated during and/or analysed during the current study are available from the corresponding authors upon reasonable request.

List of figures with available raw data: Fig. 2—3D coordinate data of finds (.xlxs); Fig. 3—micro-CT scan raw model data (.stl); Figs. 4 and 5—3D digital microscopy images (.jpg, .tiff and so on); Supplementary Fig. 5—3D coordinates of individual samples (A); data spreadsheet for the sample contents (for example, clay %, Dolomite cps and so on) (B, C) as .xlsx; Supplementary Fig. 7—3D coordinate data of finds (.xlxs); Supplementary Fig. 10—micro-CT scan raw model data (.stl); Supplementary Fig. 11—micro-CT scan raw model data (.stl; further photographs of experimental bone traces); Supplementary Fig. 12—3D digital microscopy images (.jpg, .tiff and so on).

Code availability

No custom computer code or custom mathematical algorithm is involved in this study. All data were generated using standard and machine in-built software as stated in the Methods sections of the manuscript and the Supplementary Information, as well as the Reporting Summary.

Change history


  1. 1.

    Higham, T. et al. Testing models for the beginnings of the Aurignacian and the advent of figurative art and music: the radiocarbon chronology of Geißenklösterle. J. Hum. Evol. 62, 664–676 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Higham, T. et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306–309 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Jöris, O., Neugebauer-Maresch, C., Weninger, B. & Street, M. in New Aspects of the Central and Eastern European Upper Palaeolithic: Methods, Chronology, Technology and Subsistence (eds Neugebauer-Maresch, C. & Owen, L. R.) 101–137 (Mitteilungen der Prähistorischen Kommission 72, Verlag der Österreichischen Akademie der Wissenschaften, Vienna, 2010).

  4. 4.

    Moreau, L. & Terberger, T. in Palethnologie du Paléolithique Supérieur Ancien: Où en Sommes Nous? (eds Bodu, P. et al.) 85–96 (INRAP, 2019).

  5. 5.

    Nigst, P. R. et al. Early modern human settlement of Europe north of the Alps occurred 43,500 years ago in a cold steppe-type environment. Proc. Natl Acad. Sci. USA 111, 14394–14399 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Valladas, H. & Clottes, J. Style, Chauvet and radiocarbon. Antiquity 77, 142–145 (2003).

    Article  Google Scholar 

  7. 7.

    Pike, A. W. G. et al. U-series dating of paleolithic art in 11 caves in Spain. Science 336, 1409–1413 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Quilesa, A. et al. A high-precision chronological model for the decorated Upper Paleolithic cave of Chauvet-Pont d’Arc, Ardèche, France. Proc. Natl Acad. Sci. USA 113, 4670–4675 (2016).

    Article  CAS  Google Scholar 

  9. 9.

    Conard, N. J., Malina, M. & Münzel, S. C. New flutes document the earliest musical tradition in southwestern Germany. Nature 460, 737–740 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Floss, H. Same as it ever was? The Aurignacian of the Swabian Jura and the origins of Palaeolithic art. Quat. Int. 491, 21–29 (2018).

    Article  Google Scholar 

  11. 11.

    Kind, C.-J., Ebinger-Rist, N., Wolf, S., Beutelspacher, T. & Wehrberger, K. The smile of the lion man: recent excavations in Stadel Cave (Baden-Württemberg, south-western Germany) and the restoration of the famous Upper Palaeolithic figurine. Quartär 61, 129–145 (2014).

    Google Scholar 

  12. 12.

    Conard, N. J. A female figurine from the basal Aurignacian of Hohle Fels Cave in southwestern Germany. Nature 459, 248–252 (2009).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Neugebauer-Maresch, C. Zum Neufund einer weiblichen Statuette an der Aurignac-Station Stratzing/Krems-Rehberg, Niederösterreich. Germania 67, 551–559 (1989).

    Google Scholar 

  14. 14.

    Hublin, J. J. et al. Initial Upper Palaeolithic Homo sapiens from Bacho Kiro Cave, Bulgaria. Nature 581, 299–302 (2020).

    CAS  Article  Google Scholar 

  15. 15.

    Boëda, E. Le Concept Levallois: Variabilité des Méthodes Monographie du CRA 9 (CNRS, Paris, 1994).

  16. 16.

    Muller, A., Clarkson, C. & Shipton, C. Measuring behavioural and cognitive complexity in lithic technology throughout human evolution. J. Anthropol. Archaeol. 48, 166–180 (2017).

    Article  Google Scholar 

  17. 17.

    Thieme, H. Lower Palaeolithic hunting spears from Germany. Nature 1997, 807–810 (1997).

    Article  Google Scholar 

  18. 18.

    Schoch, W. Holzanatomische Nachuntersuchungen an der eemzeitlichen Holzlanze von Lehringen, Ldkr. Verden. Nachr. Nieders Urgesch. 83, 19–29 (2014).

    Google Scholar 

  19. 19.

    Gaudzinski, S. Middle Palaeolithic bone tools from the open-air site Salzgitter-Lebenstedt (Germany). J. Archaeol. Sci. 26, 125–141 (1999).

    Article  Google Scholar 

  20. 20.

    Julien, A.-M. et al. Characterizing the Lower Paleolithic bone industry from Schöningen 12 II: a multi-proxy study. J. Hum. Evol. 89, 264–286 (2015).

    Article  PubMed  Google Scholar 

  21. 21.

    Schoch, W. H., Bigga, G., Böhner, U., Richter, P. & Terberger, T. New insights on the wooden weapons from the Paleolithic site of Schöningen. J. Hum. Evol. 89, 214–225 (2015).

    Article  PubMed  Google Scholar 

  22. 22.

    Staesche, U. in Die Tierknochenfunde der mittelpaläolithischen Jägerstation von Salzgitter-Lebenstedt (eds Ludowici, B. & Pöppelmann, H.) 71–86 (Forschungen und Berichte des Braunschweigischen Landesmuseums 1, Verlag Uwe Krebs, 2018).

  23. 23.

    van Kolfschoten, T., Parfitt, S. A., Serangeli, J. & Bello, S. M. Lower Paleolithic bone tools from the ‘Spear Horizon’ at Schöningen (Germany). J. Hum. Evol. 89, 226–263 (2015).

    Article  PubMed  Google Scholar 

  24. 24.

    Soressi, M. et al. Neandertals made the first specialized bone tools in Europe. Proc. Natl Acad. Sci. USA 110, 14186–14190 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Aranguren, B. et al. Early Neanderthal wooden artifacts from Italy. Proc. Natl Acad. Sci. USA 115, 2054–2059 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Mania, D. & Töpfer, V. Königsaue: Gliederung, Ökologie und Mittelpaläolithische Funde der letzten Eiszeit. Veröffentlichungen des Landesmuseums für Vorgeschichte in Halle 26 (VEB Deutscher Verlag der Wissenschaften, 1973).

  27. 27.

    Niekus, M. J. L. T. et al. Middle Paleolithic complex technology and a Neandertal tar-backed tool from the Dutch North Sea. Proc. Natl Acad. Sci. USA 116, 22081–22087 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Bar-Yosef, O. & Bordes, J. G. Who were the makers of the Châtelperronian culture? J. Hum. Evol. 59, 586–593 (2010).

    Article  PubMed  Google Scholar 

  29. 29.

    d’Errico, F. D., Zilhão, J., Julien, M., Baffier, D. & Pelegrin, J. Neanderthal acculturation in Western Europe? A critical review of the evidence and it’s interpretation. Curr. Anthropol. 39, S1–S44 (1998).

    Article  Google Scholar 

  30. 30.

    Zilhão, J. in Origins of Human Innovation and Creativity (ed. Elias, S.) 35–49 (Developments in Quaternary Science 16, Elsevier, 2012).

  31. 31.

    Hublin, J. J. et al. Radiocarbon dates from the Grotte du Renne and Saint-Césaire support a Neandertal origin for the Châtelperronian. Proc. Natl Acad. Sci. USA 109, 18743–18748 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Welker, F. et al. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. Proc. Natl Acad. Sci. USA 113, 11162–11167 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Peresani, M., Fiore, I., Gala, M., Romandini, M. & Tagliacozzo, A. Late Neandertals and the intentional removal of feathers as evidenced from bird bone taphonomy at Fumane Cave 44 ky B.P., Italy. Proc. Natl Acad. Sci. USA 108, 3888–3893 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Radovčić, D., Sršen, A. O., Radovčić, J. & Frayer, D. W. Evidence for Neandertal jewellery: modified white-tailed eagle claws at Krapina. PLoS ONE 10, e0119802 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Romandini, M. et al. Convergent evidence of eagle talons used by late Neanderthals in Europe: a further assessment on symbolism. PLoS ONE 9, e101278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Rodríguez-Hidalgo, A. et al. The Châtelperronian Neanderthals of Cova Foradada (Calafell, Spain) used imperial eagle phalanges for symbolic purposes. Sci. Adv. 5, eaax1984 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Hoffmann, D. L. et al. U–Th dating of carbonate crusts reveals Neanderthal origin of Iberian cave art. Science 359, 912–915 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Slimak, L., Fietzke, J., Geneste, J. M. & Ontañón, R. Comment on “U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art”. Science 361, eaau1371 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    White, R. et al. Still no archaeological evidence that Neanderthals created Iberian cave art. J. Hum. Evol. 144, 012640 (2020).

    Article  Google Scholar 

  40. 40.

    Hoffmann, D. L. et al. Response to White et al.’s reply: ‘Still no archaeological evidence that Neanderthals created Iberian cave art’ [J. Hum. Evol. (2020) 102640]. J. Hum. Evol. 144, 102810 (2020).

    Article  PubMed  Google Scholar 

  41. 41.

    Majkić, A., Evans, S., Stepanchuk, V., Tsvelykh, A. & d’Errico, F. A decorated raven bone from the Zaskalnaya VI (Kolosovskaya) Neanderthal site, Crimea. PLoS ONE 12, e0173435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Majkić, A., d’Errico, F. & Stepanchuk, V. Assessing the significance of Palaeolithic engraved cortexes. A case study from the Mousterian site of Kiik-Koba, Crimea. PLoS ONE 13, e0195049 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Rodríguez-Vidal, J. et al. A rock engraving made by Neanderthals in Gibraltar. Proc. Natl Acad. Sci. USA 111, 13301–13306 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Shaham, D., Belfer-Cohen, A., Rabinovich, R. & Goren-Inbar, N. A Mousterian engraved bone: principles of perception in Middle Paleolithic art. Curr. Anthropol. 60, 708–716 (2019).

    Article  Google Scholar 

  45. 45.

    Stepanchuk, V. Prolom II, a Middle Palaeolithic cave site in the eastern Crimea with non-utilitarian bone artefacts. Proc. Prehist. Soc. 59, 17–37 (1993).

    Article  Google Scholar 

  46. 46.

    Prévost, M., Groman-Yaroslavski, I., Crater Gershtein, K. M., Tejero, J.-M. & Zaidner, Y. Early evidence for symbolic behavior in the Levantine Middle Paleolithic: a 120 ka old engraved aurochs bone shaft from the open-air site of Nesher Ramla, Israel. Quat. Int. (2021).

  47. 47.

    Peresani, M. et al. Symbolic or utilitarian? Juggling interpretations of Neanderthal behavior: new inferences from the study of engraved stone surfaces. J. Anthropol. Sci. 92, 233–255 (2014).

    PubMed  Google Scholar 

  48. 48.

    Röhling, H. G. et al. An integrated geophysical and geological interpretation of the area around Unicorn Cave (Southern Harz Mountains, Germany). Z. Dtsch. Ges. Geowiss. 170, 117–144 (2019).

    Google Scholar 

  49. 49.

    Nielbock, R. Die Tierknochenfunde der Ausgrabungen 1987/88 in der Einhornhöhle bei Scharzfeld. Archäologisches Korrespondenzblatt 19, 217–230 (1989).

    Google Scholar 

  50. 50.

    Veil, S. Die archäologisch-geowissenschaftlichen Ausgrabungen 1987/1988 in der Einhornhöhle bei Scharzfeld, Ldkr. Osterode am Harz. Archäologisches Korrespondenzblatt 19, 203–215 (1989).

    Google Scholar 

  51. 51.

    Kotula, A. et al. Eiszeitliche Besiedlung in Niedersachsens Höhlen: Neue Forschungen an der Einhornhöhle im Harz, Ldkr. Göttingen. Nachr. Nieders Urgesch. 88, 211–229 (2019).

    Google Scholar 

  52. 52.

    Dibble, H. L., Chase, P. G., McPherron, S. P. & Tuffrerau, A. Testing the reality of a ‘living floor’ with archaeological data. Am. Antiquity 62, 629–651 (1997).

    Article  Google Scholar 

  53. 53.

    Boschin, F. & Crezzini, J. Morphometrical analysis on cut marks using a 3D digital microscope. Int. J. Osteoarchaeol. 22, 549–562 (2011).

    Article  Google Scholar 

  54. 54.

    Courtenay, L. A., Huguet, R., González-Aguilera, D. & Yravedra, J. A hybrid geometric morphometric deep learning approach for cut and trampling mark classification. Appl. Sci. 10, 150 (2020).

    Article  Google Scholar 

  55. 55.

    Domínguez-Rodrigo, M., Rayne Pickering, T. & Bunn, H. T. Experimental study of cut marks made with rocks unmodified by human flaking and its bearing on claims of 3.4-million-year-old butchery evidence from Dikika, Ethiopia. J. Archaeol. Sci. 39, 205–214 (2012).

    Article  Google Scholar 

  56. 56.

    Galán, A. B. & Domínguez-Rodrigo, M. An experimental study of the anatomical distribution of cut marks created by filleting and disarticulation of long bone ends. Archaeometry 55, 1132–1149 (2013).

    Article  Google Scholar 

  57. 57.

    Domínguez-Rodrigo, M. & Barba, R. New estimates of tooth mark and percussion mark frequencies at the FLK Zinj site: the carnivore-hominid-carnivore hypothesis falsified. J. Hum. Evol. 50, 170–194 (2006).

    Article  PubMed  Google Scholar 

  58. 58.

    Lister, A. M. & Stuart, A. J. The extinction of the giant deer Megaloceros giganteus (Blumenbach): new radiocarbon evidence. Quat. Int. 500, 185–2013 (2019).

    Article  Google Scholar 

  59. 59.

    Falci, C. G., Cuisin, J., Delpuech, A., Van Gijn, A. & Hofman, C. L. New Insights into use-wear development in bodily ornaments through the study of ethnographic collections. J. Archaeol. Method Theory 26, 755–805 (2019).

    Article  Google Scholar 

  60. 60.

    Wallduck, R. & Bello, S. M. Cut mark micro-morphometrics associated with the stage of carcass decay: a pilot study using three-dimensional microscopy. J. Archael. Sci. Rep. 18, 174–185 (2018).

    Google Scholar 

  61. 61.

    Bronk Ramsey, C. et al. Reanalysis of the atmospheric radiocarbon calibraton record from Lake Suigetsu, Japan. Radiocarbon 62, 989–999 (2020).

    CAS  Article  Google Scholar 

  62. 62.

    Reimer, P. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 735–757 (2020).

    Article  CAS  Google Scholar 

  63. 63.

    Hublin, J. J. The last Neanderthal. Proc. Natl Acad. Sci. USA 114, 10520–10522 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Fewlass, H. et al. A 14C chronology for the Middle to Upper Palaeolithic transition at Bacho Kiro Cave, Bulgaria. Nat. Ecol. Evol. 4, 794–801 (2020).

    Article  PubMed  Google Scholar 

  65. 65.

    Bard, E. et al. Extended dilation of the radiocarbon time scale between 40,000 and 48,000y BP and the overlap between Neanderthals and Homo sapiens. Proc. Natl Acad. Sci. USA 117, 21005–21007 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Joordens, J. C. et al. Homo erectus at Trinil on Java used shells for tool production and engraving. Nature 518, 228–231 (2015).

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Zilhão, J. Tar adhesives, Neandertals, and the tyranny of the discontinuous mind. Proc. Natl Acad. Sci. USA 116, 21966–21968 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank F. Sieker from Waygate GmbH for performing the micro-CT scans, G. Schulz and A.-L. Krogmeier (both NLD) for the conservation of the faunal remains, and M. Sietz (NLD) for identification of the wood species and cleaning of the charcoal samples. Furthermore, we acknowledge J. Vespermann (Roemer- und Pelizaeus-Museum Hildesheim), I. Verheijen (Schöningen) and À. Blanco Lapaz (Tübingen) for their support in identifying the species of the incised bone, and T. Wulf (NLD) for providing the extended data online. We are grateful to M. Niekus (University of Groningen) and S. McPherron (Max-Planck Institute, Leipzig) for helpful comments on an earlier draft of this paper. We are indebted to the Niedersächsisches Ministerium für Wissenschaft und Kultur for making this research possible through the Pro*Niedersachsen grant no. 76202-76-2/17 (D.L., T.T.).

Author information




D.L. designed the project, analysed the finds, contributed to the experiments and discussion, and wrote major parts of the text. R.H. designed and performed the bone carving experiment, and contributed to the text. M.H. performed radiocarbon dating and contributed to the text. G.R. analysed faunal remains and contributed to the text. P.H. conducted sediment analysis and contributed to the text. R.N. contributed to project design and field work. U.B. contributed to project design and discussion. J.L. contributed to field work and discussion. M.M. analysed the engraved bone (stereo-microscopy), was responsible for its conservation and contributed to the discussion. A.S. contributed to project design and discussion. A.T.-R. analysed the engraved bone (micro-CT scan) and contributed to the discussion. T.K. analysed the engraved bone (3D digital microscopy) and contributed to the text. T.T. designed the project, contributed to discussion and wrote major parts of the text. D.L.’s position at the State Service for Cultural Heritage Lower Saxony is funded by the Niedersächsisches Ministerium für Wissenschaft und Kultur, who made this research possible through the Pro*Niedersachsen grant no. 76202-76-2/17. The grant also comprises financial support, for example, for archaeological field work, radiocarbon dating and organic material studies. All relevant funding awarded to each author is described in the Acknowledgements section; if not indicated, funding was provided by the authors’ institutions.

Corresponding authors

Correspondence to Dirk Leder or Thomas Terberger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks Rebecca Wragg Sykes, Silvia Bello and Tom Higham for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary results, methods, Figs. 1–18, Tables 1–9 and references.

Reporting Summary

Peer Review Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leder, D., Hermann, R., Hüls, M. et al. A 51,000-year-old engraved bone reveals Neanderthals’ capacity for symbolic behaviour. Nat Ecol Evol 5, 1273–1282 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing