Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plant–microbe interactions underpin contrasting enzymatic responses to wetland drainage

Subjects

Abstract

The carbon storage of wetlands is related to inhibited enzyme activity (particularly phenol oxidase) under oxygen-deprived conditions. However, phenol oxidase response to field drainage is highly uncertain, constraining our ability to predict wetland carbon–climate feedbacks. Here, using literature data, laboratory simulations and a pair-wise survey of 30 diverse wetlands experiencing long-term (15–55 years) drainage across China, we show that while short-term drainage generally leads to increased phenol oxidative activity, its response to long-term drainage diverges in Sphagnum versus non-Sphagnum wetlands. In non-Sphagnum wetlands, long-term drainage is linked to increased plant secondary metabolites and decreased phenol oxidase-producing microbes, while in Sphagnum wetlands, drainage is linked to replacement of antimicrobial Sphagnum by vascular plants and increased phenol oxidative activity with cascading effects on hydrolytic enzymes. Our findings highlight that trait-based plant dynamics are pivotal to decipher wetland carbon dynamics and feedback to climate change under shifting hydrological regimes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sampling sites and experimental design.
Fig. 2: Response of phenol oxidative activity to wetland drainage.
Fig. 3: Soil microbes related to phenol oxidase production.
Fig. 4: Plant metabolites and their links with phenol oxidase-producing microbes.
Fig. 5: Pathways regulating enzymatic response to long-term drainage.

Similar content being viewed by others

Data availability

All data supporting the findings are available via Figshare at https://doi.org/10.6084/m9.figshare.26038639 (ref. 64).

Code availability

Data analysis was carried out using R v.4.1.3, which is publicly available at https://www.r-project.org. The supporting code is available via Figshare at https://doi.org/10.6084/m9.figshare.25604109 (ref. 65).

References

  1. Nichols, J. E. & Peteet, D. M. Rapid expansion of northern peatlands and doubled estimate of carbon storage. Nat. Geosci. 12, 917–921 (2019).

    Article  CAS  Google Scholar 

  2. Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, 13 (2010).

    Article  Google Scholar 

  3. Leifeld, J., Wüst-Galley, C. & Page, S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Change 9, 945–947 (2019).

    Article  CAS  Google Scholar 

  4. Freeman, C., Ostle, N. & Kang, H. An enzymatic ‘latch’ on a global carbon store. Nature 409, 149 (2001).

    Article  CAS  Google Scholar 

  5. Fenner, N. & Freeman, C. Woody litter protects peat carbon stocks during drought. Nat. Clim. Change 10, 363–369 (2020).

    Article  Google Scholar 

  6. Murray, N. J. The extent and drivers of global wetland loss. Nature 614, 234–235 (2023).

    Article  CAS  Google Scholar 

  7. Fluet-Chouinard, E. et al. Extensive global wetland loss over the past three centuries. Nature 614, 281–286 (2023).

    Article  CAS  Google Scholar 

  8. Fenner, N. & Freeman, C. Drought-induced carbon loss in peatlands. Nat. Geosci. 4, 895–900 (2011).

    Article  CAS  Google Scholar 

  9. Urbanová, Z. & Hájek, T. S. Revisiting the concept of ‘enzymic latch’ on carbon in peatlands. Sci. Total Environ. 779, 146384 (2021).

    Article  Google Scholar 

  10. Hall, S. J. & Silver, W. L. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils. Glob. Change Biol. 19, 2804–2813 (2013).

    Article  Google Scholar 

  11. Wang, Y. Y., Wang, H., He, J. & Feng, X. J. Iron-mediated soil carbon response to water-table decline in an alpine wetland. Nat. Commun. 8, 15972 (2017).

    Article  CAS  Google Scholar 

  12. Toberman, H. et al. Summer drought effects upon soil and litter extracellular phenol oxidase activity and soluble carbon release in an upland Calluna heathland. Soil Biol. Biochem. 40, 1519–1532 (2008).

    Article  CAS  Google Scholar 

  13. Harris, L. I., Moore, T. R., Roulet, N. T. & Pinsonneault, A. J. Limited effect of drainage on peat properties, porewater chemistry and peat decomposition proxies in a boreal peatland. Biogeochemistry 151, 43–62 (2020).

    Article  CAS  Google Scholar 

  14. Laiho, R. Decomposition in peatlands: reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol. Biochem. 38, 2011–2024 (2006).

    Article  CAS  Google Scholar 

  15. Freeman, C., Ostle, N. J., Fenner, N. & Kang, H. A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biol. Biochem. 36, 1663–1667 (2004).

    Article  CAS  Google Scholar 

  16. Sinsabaugh, R. L. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol. Biochem. 42, 391–404 (2010).

    Article  CAS  Google Scholar 

  17. Zhao, Y. P., Xiang, W., Huang, C. L., Liu, Y. & Tan, Y. Production of hydroxyl radicals following water-level drawdown in peatlands: a new induction mechanism for enhancing laccase activity in carbon cycling. Soil Biol. Biochem. 156, 108241 (2021).

    Article  CAS  Google Scholar 

  18. McGivern, B. B. et al. Decrypting bacterial polyphenol metabolism in an anoxic wetland soil. Nat. Commun. 12, 2466 (2021).

    Article  CAS  Google Scholar 

  19. Kang, H. et al. Biologically driven DOC release from peatlands during recovery from acidification. Nat. Commun. 9, 3807 (2018).

    Article  Google Scholar 

  20. Kitson, E. & Bell, N. G. A. The response of microbial communities to peatland drainage and rewetting: a review. Front. Microbiol. 11, 582812 (2020).

    Article  Google Scholar 

  21. Sytiuk, A. et al. Linkages between Sphagnum metabolites and peatland CO2 uptake are sensitive to seasonality in warming trends. New Phytol. 237, 1164–1178 (2023).

    Article  CAS  Google Scholar 

  22. Bao, T., Jia, G. & Xu, X. Weakening greenhouse gas sink of pristine wetlands under warming. Nat. Clim. Change 13, 462–469 (2023).

    Article  CAS  Google Scholar 

  23. Temmink, R. J. M. et al. Recovering wetland biogeomorphic feedbacks to restore the world’s biotic carbon hotspots. Science 376, 594 (2022).

    Article  Google Scholar 

  24. Zhao, Y. P. et al. Sphagnum increases soil’s sequestration capacity of mineral-associated organic carbon via activating metal oxides. Nat. Commun. 14, 5052 (2023).

    Article  CAS  Google Scholar 

  25. Liu, C. Z. et al. Enhanced microbial contribution to mineral-associated organic carbon accrual in drained wetlands: beyond direct lignin-iron interactions. Soil Biol. Biochem. 185, 109152 (2023).

    Article  CAS  Google Scholar 

  26. Clymo, R. S. & Hayward, P. M. in Bryophyte Ecology (ed. Smith, A. J. E.) 229–289 (Chapman and Hall, 1982).

  27. Piatkowski, B. T. & Shaw, A. J. Functional trait evolution in Sphagnum peat mosses and its relationship to niche construction. New Phytol. 223, 939–949 (2019).

    Article  CAS  Google Scholar 

  28. Van Breemen, N. How Sphagnum bogs down other plants. Trends Ecol. Evol. 10, 270–275 (1995).

    Article  Google Scholar 

  29. Jassey, V. E. J., Chiapusio, G. & Binet, B. Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions. Glob. Change Biol. 19, 811–823 (2013).

    Article  Google Scholar 

  30. Bengtsson, F. et al. Environmental drivers of Sphagnum growth in peatlands across the Holarctic region. J. Ecol. 109, 417–431 (2021).

    Article  CAS  Google Scholar 

  31. Strack, M., Waddington, J. M., Lucchese, M. C. & Cagampan, J. P. Moisture controls on CO2 exchange in a Sphagnum-dominated peatland: results from an extreme drought field experiment. Ecohydrology 2, 454–461 (2009).

    Article  CAS  Google Scholar 

  32. Deng, Y. et al. Molecular ecological network analyses. BMC Bioinformatics 13, 113 (2012).

    Article  Google Scholar 

  33. Feng, K. et al. iNAP: an integrated Network Analysis Pipeline for microbiome studies. iMeta 1, 13 (2022).

    Article  Google Scholar 

  34. Yuan, M. M. et al. Climate warming enhances microbial network complexity and stability. Nat. Clim. Change 11, 343–348 (2021).

    Article  Google Scholar 

  35. Xiao, N. et al. Disentangling direct from indirect relationships in association networks. Proc. Natl Acad. Sci. USA 119, e2109995119 (2022).

    Article  CAS  Google Scholar 

  36. Sytiuk, A. et al. Biochemical traits enhance the trait concept in Sphagnum ecology. Oikos 2022, e09119 (2022).

    Article  CAS  Google Scholar 

  37. Vranová, E., Coman, D. & Gruissem, W. Structure and dynamics of the isoprenoid pathway network. Mol. Plant 5, 318–333 (2012).

    Article  Google Scholar 

  38. Das, K. & Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2, 53 (2014).

    Article  Google Scholar 

  39. Zhao, Y. P. et al. Triple locks on soil organic carbon exerted by Sphagnum acid in wetlands. Geochim. Cosmochim. Acta 31, 524–537 (2021).

    Google Scholar 

  40. Noyce, G. L. et al. Oxygen priming induced by elevated CO2 reduces carbon accumulation and methane emissions in coastal wetlands. Nat. Geosci. 16, 63–68 (2023).

    Article  CAS  Google Scholar 

  41. Larmola, T. et al. Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. Glob. Change Biol. 19, 3729–3739 (2013).

    Article  Google Scholar 

  42. Pind, A., Freeman, C. & Lock, M. A. Enzymic degradation of phenolic materials in peatlands measurement of phenol oxidase activity. Plant Soil 159, 227–231 (1994).

    Article  CAS  Google Scholar 

  43. Khosrozadeh, S., Dorodnikov, M., Reitz, T. & Blagodatskaya, E. An improved Amplex Red-based fluorometric assay of phenol oxidases and peroxidases activity: a case study on Haplic Chernozem. Eur. J. Soil Sci. 73, e13225 (2022).

    Article  CAS  Google Scholar 

  44. Kim, J. I., Yang, Y. & Kang, H. Fluorometric assay for phenol oxidase activity in soils and its controlling variables. Appl. Soil Ecol. 195, 105240 (2024).

    Article  Google Scholar 

  45. Bach, C. E. et al. Measuring phenol oxidase and peroxidase activities with pyrogallol, l-DOPA and ABTS: effect of assay conditions and soil type. Soil Biol. Biochem. 67, 183–191 (2013).

    Article  CAS  Google Scholar 

  46. Naughton, H. R. et al. Reactive iron, not fungal community, drives organic carbon oxidation potential in floodplain soils. Soil Biol. Biochem. 178, 108962 (2023).

    Article  CAS  Google Scholar 

  47. German, D. P. et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol. Biochem. 43, 1387–1397 (2011).

    Article  CAS  Google Scholar 

  48. Sanchez-Julia, M. & Turner, B. L. Abiotic contribution to phenol oxidase activity across a manganese gradient in tropical forest soils. Biogeochemistry 153, 1–13 (2021).

    Article  Google Scholar 

  49. Zimmerman, A. R., Chorover, J., Goyne, K. W. & Brantley, S. L. Protection of mesopore-adsorbed organic matter from enzymatic degradation. Environ. Sci. Technol. 38, 4542–4548 (2004).

    Article  CAS  Google Scholar 

  50. Li, Y. et al. Oxygen availability regulates the quality of soil dissolved organic matter by mediating microbial metabolism and iron oxidation. Glob. Change Biol. 28, 7410–7427 (2022).

    Article  CAS  Google Scholar 

  51. Liu, C. Z. et al. Metallic protection of soil carbon: divergent drainage effects in Sphagnum vs. non-Sphagnum wetlands. Natl Sci. Rev. 11, nwae178 (2024).

    Article  Google Scholar 

  52. Box, J. D. Investigation of the folin-ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Water Res. 17, 249–261 (1983).

    Article  Google Scholar 

  53. Turner, B. L. & Haygarth, P. M. Changes in bicarbonate-extractable inorganic and organic phosphorus by drying pasture soils. Soil Sci. Soc. Am. J. 67, 344–350 (2003).

    Article  CAS  Google Scholar 

  54. Peng, Z. et al. Contrasting patterns and drivers of soil micronutrient availability in paddy and maize fields of eastern China. Geoderma 431, 116342 (2013).

    Article  Google Scholar 

  55. Stookey, L. L. Ferrozine a new spectrophotometric reagent for iron. Anal. Chem. 42, 779–781 (1970).

    Article  CAS  Google Scholar 

  56. Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).

    Article  CAS  Google Scholar 

  57. Zhao, Y. P., Xiang, W., Yan, S., Hang, Y. B. & Fan, W. G. Laccase activity in Sphagnum-dominated peatland: a study based on a novel measurement of delay dynamics (MDD) for determining laccase activity. Soil Biol. Biochem. 133, 108–115 (2019).

    Article  CAS  Google Scholar 

  58. Ausec, L., van Elsas, J. D. & Mandic-Mulec, I. Two- and three-domain bacterial laccase-like genes are present in drained peat soils. Soil Biol. Biochem. 43, 975–983 (2011).

    Article  CAS  Google Scholar 

  59. Ortiz, M. et al. Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. Proc. Natl Acad. Sci. USA 118, e2025322118 (2021).

    Article  CAS  Google Scholar 

  60. Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

    Article  Google Scholar 

  61. Wu, L. et al. Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nat. Microbiol. 7, 1054–1062 (2022).

    Article  CAS  Google Scholar 

  62. Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article  Google Scholar 

  63. Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).

    Article  Google Scholar 

  64. Zhao, Y. P. et al. Data for ‘Plant–microbe interactions underpin contrasting enzymatic responses to wetland drainage’. Figshare https://doi.org/10.6084/m9.figshare.26038639 (2024).

  65. Zhao, Y. P. et al. Code used for ‘Plant–microbe interactions underpin contrasting enzymatic responses to wetland drainage’. Figshare https://doi.org/10.6084/m9.figshare.25604109.v1 (2024).

Download references

Acknowledgements

This study was supported financially by the National Natural Science Foundation of China (grant nos. 42025303, 31988102, 42230501). We thank Plant Science Facility of the Institute of Botany, Chinese Academy of Sciences for their help in sample analysis. We thank Natural Reserves in Dajiuhu, Jinchuan, Niangningshan, Dapingjing, Xundian, Wuyiling, Qizimei, Erxianyan, Aershan, Mohe, Panguhe, Honghe, Naolihe, Qixinghe, Xingkaihu, Zoige, Ruoergai, Caohai, Eeerguna, Shaliuhe, Luanhaizi, Jiuquan, Dongtinghu and Poyanghu for support in soil sampling. We also acknowledge data support from the National Earth System Science Data Center, National Science & Technology Infrastructure of China (http://www.geodata.cn/).

Author information

Authors and Affiliations

Authors

Contributions

X.F. and Y.Z. designed this study. Y.Z. conducted soil sampling and analytical measurements with help from C.L. and X.L. Y.Z. and X.F. analysed the data with help from E.K. and Y.D. Y.Z. and X.F. wrote the paper with input from all other authors.

Corresponding author

Correspondence to Xiaojuan Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Hojeong Kang, Yuan Wen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 β-Glucosidase activity.

a, Response of β-glucosidase activity to long-term drainage (0‒20 cm). b, Spearman’s correlation between phenol oxidative activity and β-glucosidase activity. The violin plots show the distribution of data. The dots mark the value of samples. The solid lines in violin plots mark the median of each dataset. The signs of plus (+), minus (–) and cross (×) represent significant increase, decrease and no change after drainage at the level of P = 0.05 (t-test), respectively. Error bars in bar graph represent standard error of mean (n = 4). Solid lines in correlation analysis represent the linear regressions (n = 240; P < 0.05). The shaded areas represent the 95% confidence intervals.

Extended Data Fig. 2 The abundance of β-glucosidase-producing functional genes.

a, Spearman’s correlations of the abundance of β-glucosidase-producing functional genes with β-glucosidase activity in Sphagnum (n = 84) and non-Sphagnum wetlands (n = 96), respectively. b, Site-weighted response ratio (RR++) of the abundance of β-glucosidase-producing functional genes in the drained relative to waterlogged soils in Sphagnum (n = 84) and non-Sphagnum wetlands (n = 96), respectively. Solid lines in a indicate linear regressions (P < 0.05). The shaded areas represent the 95% confidence intervals. Error bars in bar graph represent 95% confidence interval. If the 95% CI did not overlap with zero, the response was considered to be significant.

Supplementary information

Supplementary Information

Supplementary Text 1–5, Figs. 1–15 and Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Liu, C., Kang, E. et al. Plant–microbe interactions underpin contrasting enzymatic responses to wetland drainage. Nat. Clim. Chang. 14, 1078–1086 (2024). https://doi.org/10.1038/s41558-024-02101-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-024-02101-3

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology