Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Increasing numbers of global change stressors reduce soil carbon worldwide

Abstract

Soils support a vast amount of carbon (C) that is vulnerable to climatic and anthropogenic global change stressors (for example, drought and human-induced nitrogen deposition). However, the simultaneous effects of an increasing number of global change stressors on soil C storage and persistence across ecosystems are virtually unknown. Here, using 1,880 surface soil samples from 68 countries across all continents, we show that increases in the number of global change stressors simultaneously exceeding medium–high levels of stress (that is, relative to their maximum levels observed in nature) are negatively and significantly correlated with soil C stocks and mineral association across global biomes. Soil C is particularly vulnerable in low-productivity ecosystems (for example, deserts), which are subjected to a greater number of global change stressors exceeding medium–high levels of stress simultaneously. Taken together, our work indicates that the number of global change stressors is a crucial factor for soil C storage and persistence worldwide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geographical distribution of the global soil sampling sites included in this study.
Fig. 2: Effects of the number of global change stressors exceeding a given threshold on key factors that control soil C storage and persistence.
Fig. 3: Importance of the number of global change stressors trespassing different levels of stress.
Fig. 4: Global distributions of global change stressors and soil C variables.

Similar content being viewed by others

Data availability

The raw data associated with this study are available via figshare at https://doi.org/10.6084/m9.figshare.24085659(ref. 70).

Code availability

Code is available via figshare at https://doi.org/10.6084/m9.figshare.24085659 (ref. 70).

References

  1. Zomer, R. J., Bossio, D. A., Sommer, R. & Verchot, L. V. Global sequestration potential of increased organic carbon in cropland soils. Sci. Rep. 7, 15554 (2017).

    Google Scholar 

  2. Kopittke, P. M. et al. Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils. Crit. Rev. Environ. Sci. Technol. 52, 4308–4324 (2022).

  3. Yue, K. et al. Influence of multiple global change drivers on terrestrial carbon storage: additive effects are common. Ecol. Lett. 20, 663–672 (2017).

    Google Scholar 

  4. Perkins-Kirkpatrick, S. E. & Lewis, S. C. Increasing trends in regional heatwaves. Nat. Commun. 11, 3357 (2020).

    CAS  Google Scholar 

  5. Orr, J. A. et al. Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proc. R. Soc. B 287, 20200421 (2020).

    Google Scholar 

  6. Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).

    CAS  Google Scholar 

  7. Zhou, L. et al. Interactive effects of global change factors on soil respiration and its components: a meta-analysis. Glob. Change Biol. 22, 3157–3169 (2016).

    Google Scholar 

  8. Yue, K. et al. Responses of nitrogen concentrations and pools to multiple environmental change drivers: a meta-analysis across terrestrial ecosystems. Glob. Ecol. Biogeogr. 28, 690–724 (2019).

    Google Scholar 

  9. Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).

    CAS  Google Scholar 

  10. Du, Y., Lu, R. & Xia, J. Impacts of global environmental change drivers on non-structural carbohydrates in terrestrial plants. Funct. Ecol. 34, 1525–1536 (2020).

    Google Scholar 

  11. Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J. & Lugato, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 12, 989–994 (2019).

    CAS  Google Scholar 

  12. Bowler, D. E. et al. Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes. People Nat. 2, 380–394 (2020).

    Google Scholar 

  13. Pellegrini, A. F. A. et al. Fire effects on the persistence of soil organic matter and long-term carbon storage. Nat. Geosci. 15, 5–13 (2022).

    CAS  Google Scholar 

  14. Sanderson, E. W. et al. The human footprint and the last of the wild. Bioscience 52, 891–904 (2002).

    Google Scholar 

  15. Giglio, L., Justice, C., Boschetti, L. & Roy, D. MCD64A1 MODIS/Terra+Aqua Burned Area Monthly L3 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, accessed 17 May 2017); https://doi.org/10.5067/MODIS/MCD64A1.006

  16. Byrnes, J. E. K. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).

    Google Scholar 

  17. Rillig, M. C. et al. Increasing the number of stressors reduces soil ecosystem services worldwide. Nat. Clim. Change 13, 478–483 (2023).

    Google Scholar 

  18. Knicker, H., González-Vila, F. J., Polvillo, O., González, J. A. & Almendros, G. Fire-induced transformation of C- and N- forms in different organic soil fractions from a dystric cambisol under a Mediterranean pine forest (Pinus pinaster). Soil Biol. Biochem. 37, 701–718 (2005).

    CAS  Google Scholar 

  19. Schmidt-Rohr, K., Mao, J.-D., Olk, D. C. & Bremner, J. M. Nitrogen-bonded aromatics in soil organic matter and their implications for a yield decline in intensive rice cropping. Proc. Natl Acad. Sci. USA 101, 6351–6354 (2004).

    CAS  Google Scholar 

  20. Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).

    CAS  Google Scholar 

  21. Amelung, W. et al. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 11, 5427 (2020).

    CAS  Google Scholar 

  22. Guo, X. et al. Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming. Nat. Commun. 11, 4897 (2020).

    CAS  Google Scholar 

  23. Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).

    CAS  Google Scholar 

  24. Delgado-Baquerizo, M. et al. Changes in belowground biodiversity during ecosystem development. Proc. Natl Acad. Sci. USA 116, 6891–6896 (2019).

    CAS  Google Scholar 

  25. Anderson, J. M. & Ingram, J. S. I. Tropical Soil Biology and Fertility: A Handbook of Methods Vol. 221 (CAB International, 1993).

  26. Sokol, N. W., Sanderman, J. & Bradford, M. A. Pathways of mineral-associated soil organic matter formation: integrating the role of plant carbon source, chemistry, and point of entry. Glob. Change Biol. 25, 12–24 (2019).

    Google Scholar 

  27. Harris, D., Horwáth, W. R. & van Kessel, C. Acid fumigation of soils to remove carbonates prior to total organic carbon or CARBON-13 isotopic analysis. Soil Sci. Soc. Am. J. 65, 1853–1856 (2001).

    CAS  Google Scholar 

  28. Lugato, E., Lavallee, J. M., Haddix, M. L., Panagos, P. & Cotrufo, M. F. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nat. Geosci. 14, 295–300 (2021).

    CAS  Google Scholar 

  29. Soil Organic Matter (SOM) Fractions (European Soil Data Centre, accessed 12 May 2024); https://esdac.jrc.ec.europa.eu/content/soil-organic-matter-som-fractions

  30. Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).

    CAS  Google Scholar 

  31. Dungait, J. A. J., Hopkins, D. W., Gregory, A. S. & Whitmore, A. P. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob. Change Biol. 18, 1781–1796 (2012).

    Google Scholar 

  32. Margenot, A. J., Calderón, F. J., Bowles, T. M., Parikh, S. J. & Jackson, L. E. Soil organic matter functional group composition in relation to organic carbon, nitrogen, and phosphorus fractions in organically managed tomato fields. Soil Sci. Soc. Am. J. 79, 772–782 (2015).

    CAS  Google Scholar 

  33. Thevenot, M., Dignac, M.-F. & Rumpel, C. Fate of lignins in soils: a review. Soil Biol. Biochem. 42, 1200–1211 (2010).

    CAS  Google Scholar 

  34. Bingham, A. H. & Cotrufo, M. F. Organic nitrogen storage in mineral soil: implications for policy and management. Sci. Total Environ. 551–552, 116–126 (2016).

    Google Scholar 

  35. Campbell, C. D., Chapman, S. J., Cameron, C. M., Davidson, M. S. & Potts, J. M. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69, 3593–3599 (2003).

    CAS  Google Scholar 

  36. García-Palacios, P., Prieto, I., Ourcival, J. M. & Hättenschwiler, S. Disentangling the litter quality and soil microbial contribution to leaf and fine root litter decomposition responses to reduced rainfall. Ecosystems 19, 490–503 (2016).

    Google Scholar 

  37. García-Palacios, P., Milla, R., Álvaro-Sánchez, M., Martín-Robles, N. & Maestro, M. Application of a high-throughput laboratory method to assess litter decomposition rates in multiple-species experiments. Soil Biol. Biochem. 57, 929–932 (2013).

    Google Scholar 

  38. Sáez-Sandino, T. et al. The soil microbiome governs the response of microbial respiration to warming across the globe. Nat. Clim. Change 13, 1382–1387 (2023).

    Google Scholar 

  39. Fraser, F. C. et al. On the origin of carbon dioxide released from rewetted soils. Soil Biol. Biochem. 101, 1–5 (2016).

    CAS  Google Scholar 

  40. Dacal, M., Bradford, M. A., Plaza, C., Maestre, F. T. & García-Palacios, P. Soil microbial respiration adapts to ambient temperature in global drylands. Nat. Ecol. Evol. 3, 232–238 (2019).

    Google Scholar 

  41. Soong, J. L. et al. Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling. Glob. Change Biol. 26, 1953–1961 (2020).

    Google Scholar 

  42. Maestre, F. T. et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. USA 112, 15684–15689 (2015).

    CAS  Google Scholar 

  43. Legesse, T. G. et al. Extreme wet precipitation and mowing stimulate soil respiration in the Eurasian meadow steppe. Sci. Total Environ. 851, 158130 (2022).

    CAS  Google Scholar 

  44. Anjileli, H. et al. Extreme heat events heighten soil respiration. Sci. Rep. 11, 6632 (2021).

    CAS  Google Scholar 

  45. Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015).

    Google Scholar 

  46. Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).

    CAS  Google Scholar 

  47. Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).

    CAS  Google Scholar 

  48. Gross, A. & Glaser, B. Meta-analysis on how manure application changes soil organic carbon storage. Sci. Rep. 11, 5516 (2021).

    CAS  Google Scholar 

  49. Feng, Y. et al. Temperature thresholds drive the global distribution of soil fungal decomposers. Glob. Change Biol. 28, 2779–2789 (2022).

    Google Scholar 

  50. Delgado-Baquerizo, M. et al. Climate legacies drive global soil carbon stocks in terrestrial ecosystems. Sci. Adv. 3, e1602008 (2017).

    Google Scholar 

  51. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  52. Zomer, R. J. & Trabucco, A. Global Aridity Index and Potential Evapotranspiration (ET0) Database v2. figshare https://doi.org/10.6084/m9.figshare.7504448.v3 (2022).

  53. Beguería, S., Vicente-Serrano, S. M., Reig, F. & Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).

    Google Scholar 

  54. Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Influence Index (HII) Dataset (Geographic) (Wildlife Conservation Society and Center for International Earth Science Information Network (CIESIN), Columbia Univ., 2005).

  55. Potter, P., Ramankutty, N., Bennett, E. M. & Donner, S. D. Global Fertilizer and Manure, Version 1: Nitrogen in Manure Production (NASA SEDAC, 2012); https://doi.org/10.7927/H4KH0K81

  56. Potter, P., Ramankutty, N., Bennett, E. M. & Donner, S. D. Characterizing the spatial patterns of global fertilizer application and manure production. Earth Interact. 14, 1–22 (2010).

    Google Scholar 

  57. Wan, Z., Hook, S. & Hulley, G. MOD11A1 MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V006 (NASA EOSDIS Land Processes DAAC and CIESIN, 2015); https://doi.org/10.5067/MODIS/MOD11A1.006

  58. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 (NASA SEDAC and CIESIN, 2018); https://doi.org/10.7927/H49C6VHW

  59. Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).

    CAS  Google Scholar 

  60. Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5, 170191 (2018).

    Google Scholar 

  61. Peng, R. D. Package "simpleboot": Simple Bootstrap Routines. R package version 1.1–7 (2022).

  62. Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).

    Google Scholar 

  63. Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2006).

    Google Scholar 

  64. Barton, K. MuMIn: multi-model inference. R package version 1.43 (2020).

  65. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Google Scholar 

  66. Buchhorn, M. et al. Copernicus Global Land Cover layers—collection 2. Remote Sens. 12, 1044 (2020).

    Google Scholar 

  67. Mallavan, B. P., Minasny, B. & McBratney, A. B. in Digital Soil Mapping (eds Boettinger, J. L. et al.) 137–150 (Springer, 2010).

  68. Piñeiro, G., Perelman, S., Guerschman, J. P. & Paruelo, J. M. How to evaluate models: observed vs. predicted or predicted vs. observed? Ecol. Modell. 216, 316–322 (2008).

    Google Scholar 

  69. Archer, E. rfPermute: estimate permutation p-values for random forest importance metrics. R package version 2.5.2 (2016).

  70. Sáez-Sandino, T. & Delgado-Baquerizo, M. Increasing numbers of global change stressors reduce soil carbon worldwide. figshare https://doi.org/10.6084/m9.figshare.24085659 (2024).

Download references

Acknowledgements

We thank the researchers originally involved in the BIODESERT, CLIMIFUN and MUSGONET projects for their help with sampling. F.T.M. was supported by European Research Council grant number 647038 (BIODESERT), Generalitat Valenciana grant number CIDEGENT/2018/041, by the Spanish Ministry of Science and Innovation (grant numbers EUR2022-134048 and PID2020-116578RB-I00) and by the contract between ETH Zurich and University of Alicante “Mapping terrestrial ecosystem structure at the global scale”. E.G. acknowledges funding from Generalitat Valenciana and Europen Social Fund (grant number APOSTD/2021/188). F.T.M. also acknowledges support from the King Abdullah University of Science and Technology (KAUST) and the KAUST Climate and Livability Initiative. T.S.-S., A.G. and M.D.-B. are supported by grant number TED2021-130908B-C41 (URBANCHANGE). M.D.-B. was also supported by the European Research Council (ERC) grant number 647038 (BIODESERT), BES grant agreement number LRB17\1019 (MUSGONET), the innovation programme under Marie Sklodowska-Curie grant agreement number 702057 (CLIMIFUN), Ramón y Cajal grant number RYC2018-025483-I, a project from the Spanish Ministry of Science and Innovation (grant number PID2020-115813RA-I00; SOIL4GROWTH) and project PAIDI 2020 from the Junta de Andalucía (grant number P20_00879). C.W.M. acknowledges funding for the research provided by the NSF Postdoctoral Fellowship in Polar Regions Research (grant number 0852036), the German Science Foundation (DFG) for financial support in the frame of the “Initiation of International Collaboration” (grant number MU 3021/2-1) and funding within the DFG Priority Programme 1158 “Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas” (grant number MU 3021/8-1). M.B. acknowledges funding from Spanish Ministry of Science and Innovation through a Ramón y Cajal Fellowship (# RYC2021-031797-I).

Author information

Authors and Affiliations

Authors

Contributions

M.D.-B. and T.S.-S. designed the research. M.D.-B., F.T.M., A.G., C.W.M. and T.W.C. acquired funding. T.S-S., E.G. and M.B. analysed data. T.S.-S., M.D.-B., F.T.M., A.G., M.B., C.P., P.G.-P., G.Z., E.G., C.W.M., L.T. and T.W.C. wrote the paper, and all authors contributed to the drafts.

Corresponding authors

Correspondence to Tadeo Sáez-Sandino or Manuel Delgado-Baquerizo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sáez-Sandino, T., Maestre, F.T., Berdugo, M. et al. Increasing numbers of global change stressors reduce soil carbon worldwide. Nat. Clim. Chang. 14, 740–745 (2024). https://doi.org/10.1038/s41558-024-02019-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-024-02019-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing