Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Demand-side strategies key for mitigating material impacts of energy transitions

Abstract

As fossil fuels are phased out in favour of renewable energy, electric cars and other low-carbon technologies, the future clean energy system is likely to require less overall mining than the current fossil-fuelled system. However, material extraction and waste flows, new infrastructure development, land-use change, and the provision of new types of goods and services associated with decarbonization will produce social and environmental pressures at localized to regional scales. Demand-side solutions can achieve the important outcome of reducing both the scale of the climate challenge and material resource requirements. Interdisciplinary systems modelling and analysis are needed to identify opportunities and trade-offs for demand-led mitigation strategies that explicitly consider planetary boundaries associated with Earth’s material resources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparative overview of impacts of extracting and supplying emerging materials and fossil fuels.
Fig. 2: Shifting risks and response strategies from the clean energy transition.

Similar content being viewed by others

References

  1. Rogelj, J. et al. Credibility gap in net-zero climate targets leaves world at high risk. Science 380, 1014–1016 (2023).

    Article  CAS  Google Scholar 

  2. Bertram, C. et al. COVID-19-induced low power demand and market forces starkly reduce CO2 emissions. Nat. Clim. Change 11, 193–196 (2021).

    Article  CAS  Google Scholar 

  3. Creutzig, F., Hilaire, J., Nemet, G., Müller-Hansen, F. & Minx, J. C. Technological innovation enables low cost climate change mitigation. Energy Res. Soc. Sci. 105, 103276 (2023).

    Article  Google Scholar 

  4. Bogdanov, D. et al. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy 227, 120467 (2021).

    Article  Google Scholar 

  5. IPCC: Summary for Policymakers. In Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2022).

  6. Thompson, H. Disorder: Hard Times in the 21st Century (Oxford Univ. Press, 2022).

  7. Simoes, S. G. & Lima, A. T. M. Materials, resources, and CO2 impacts of building new renewable power plants to reach EU’s goals of carbon neutrality. J. Clean. Prod. 418, 138138 (2023).

    Article  CAS  Google Scholar 

  8. Watari, T. et al. Total material requirement for the global energy transition to 2050: a focus on transport and electricity. Resour. Conserv. Recycl. 148, 91–103 (2019).

    Article  Google Scholar 

  9. Giljum, S. et al. A pantropical assessment of deforestation caused by industrial mining. Proc. Natl Acad. Sci. USA 119, e2118273119 (2022). A seminal study revealing the location of industrial mining activities and their environmental impacts in pantropical areas.

    Article  CAS  Google Scholar 

  10. Hertwich, E. G. Increased carbon footprint of materials production driven by rise in investments. Nat. Geosci. 14, 151–155 (2021).

    Article  CAS  Google Scholar 

  11. Turley, B. et al. Emergent landscapes of renewable energy storage: considering just transitions in the western United States. Energy Res. Soc. Sci. 90, 102583 (2022).

    Article  Google Scholar 

  12. Pimentel Da Silva, G. D. & Branco, D. A. C. Is floating photovoltaic better than conventional photovoltaic? Assessing environmental impacts. Impact Assess. Proj. Appraisal 36, 390–400 (2018).

    Article  Google Scholar 

  13. Owen, J. R. et al. Energy transition minerals and their intersection with land-connected peoples. Nat. Sustain. 6, 203–211 (2023).

    Article  Google Scholar 

  14. Jones, A. W. Perceived barriers and policy solutions in clean energy infrastructure investment. J. Clean. Prod. 104, 297–304 (2015).

    Article  Google Scholar 

  15. Pueyo, A. What constrains renewable energy investment in sub-Saharan Africa? A comparison of Kenya and Ghana. World Dev. 109, 85–100 (2018).

    Article  Google Scholar 

  16. Jowitt, S. M., Mudd, G. M. & Thompson, J. F. H. Future availability of non-renewable metal resources and the influence of environmental, social, and governance conflicts on metal production. Commun. Earth Environ. 1, 13 (2020).

    Article  Google Scholar 

  17. West, J. Decreasing metal ore grades. J. Ind. Ecol. 7, 88 (2011).

    Google Scholar 

  18. Graedel, T. E., Harper, E. M., Nassar, N. T., Nuss, P. & Reck, B. K. Criticality of metals and metalloids. Proc. Natl Acad. Sci. USA 112, 4257–4262 (2015).

    Article  CAS  Google Scholar 

  19. Bordoff, J. & O’Sullivan, M. L. The age of energy insecurity. Foreign Aff. 102, 104 (2023).

    Google Scholar 

  20. Vakulchuk, R., Overland, I. & Scholten, D. Renewable energy and geopolitics: a review. Renew. Sustain. Energy Rev. 122, 109547 (2020).

    Article  Google Scholar 

  21. Torres, A., Brandt, J., Lear, K. & Liu, J. A looming tragedy of the sand commons. Science 357, 970–971 (2017).

    Article  CAS  Google Scholar 

  22. Hanaček, K., Kröger, M., Scheidel, A., Rojas, F. & Martinez-Alier, J. On thin ice—the Arctic commodity extraction frontier and environmental conflicts. Ecol. Econ. 191, 107247 (2022).

    Article  Google Scholar 

  23. Maus, V. et al. An update on global mining land use. Sci. Data 9, 433 (2022).

    Article  Google Scholar 

  24. Tang, L. & Werner, T. T. Global mining footprint mapped from high-resolution satellite imagery. Commun. Earth Environ. 4, 134 (2023).

    Article  Google Scholar 

  25. Bainton, N., Kemp, D., Lèbre, E., Owen, J. R. & Marston, G. The energy–extractives nexus and the just transition. Sustain. Dev. 29, 624–634 (2021).

    Article  Google Scholar 

  26. Scheidel, A. et al. Global impacts of extractive and industrial development projects on Indigenous peoples’ lifeways, lands, and rights. Sci. Adv. 9, eade9557 (2023).

    Article  Google Scholar 

  27. Creutzig, F. et al. Digitalization and the Anthropocene. Annu. Rev. Environ. Resour. 47, 479–509 (2022). Arguably the first paper that presents illustrative scenarios of how digitalization can support the energy transition, illustrating trade-offs between planetary stability, democracy, and political agency and equity.

    Article  Google Scholar 

  28. Manjong, N. B., Usai, L., Burheim, O. S. & Strømman, A. H. Life cycle modelling of extraction and processing of battery minerals—a parametric approach. Batteries 7, 57 (2021).

    Article  CAS  Google Scholar 

  29. Berrill, P., Arvesen, A., Scholz, Y., Gils, H. C. & Hertwich, E. G. Environmental impacts of high penetration renewable energy scenarios for Europe. Environ. Res. Lett. 11, 014012 (2016).

    Article  Google Scholar 

  30. Pauliuk, S. Material footprint implications of low-carbon technologies. Industrial Ecology Freiburg Blog https://www.blog.industrialecology.uni-freiburg.de/index.php/2022/10/30/material-footprint-implications-of-low-carbon-technologies/ (2022).

  31. Luderer, G. et al. Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies. Nat. Commun. 10, 5229 (2019).

    Article  Google Scholar 

  32. Deetman, S., de Boer, H. S., Van Engelenburg, M., van der Voet, E. & van Vuuren, D. P. Projected material requirements for the global electricity infrastructure—generation, transmission and storage. Resour. Conserv. Recycl. 164, 105200 (2021).

    Article  CAS  Google Scholar 

  33. Kalt, G., Thunshirn, P., Krausmann, F. & Haberl, H. Material requirements of global electricity sector pathways to 2050 and associated greenhouse gas emissions. J. Clean. Prod. 358, 132014 (2022).

    Article  CAS  Google Scholar 

  34. Xia, X. & Li, P. A review of the life cycle assessment of electric vehicles: considering the influence of batteries. Sci. Total Environ. 814, 152870 (2022).

    Article  CAS  Google Scholar 

  35. Jaramillo, P. et al. in Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) Ch. 10 (Cambridge Univ. Press, 2022).

  36. Creutzig, F. et al. Transport: a roadblock to climate change mitigation? Science 350, 911–912 (2015).

    Article  CAS  Google Scholar 

  37. Ballinger, B. et al. The vulnerability of electric vehicle deployment to critical mineral supply. Appl. Energy 255, 113844 (2019).

    Article  CAS  Google Scholar 

  38. Churkina, G. et al. Buildings as a global carbon sink. Nat. Sustain. 3, 269–276 (2020).

    Article  Google Scholar 

  39. Hurmekoski, E., Smyth, C. E., Stern, T., Verkerk, P. J. & Asada, R. Substitution impacts of wood use at the market level: a systematic review. Environ. Res. Lett. 16, 123004 (2021).

    Article  Google Scholar 

  40. Werner, F., Taverna, R., Hofer, P., Thürig, E. & Kaufmann, E. National and global greenhouse gas dynamics of different forest management and wood use scenarios: a model-based assessment. Environ. Sci. Policy 13, 72–85 (2010).

    Article  CAS  Google Scholar 

  41. Mishra, A. et al. Land use change and carbon emissions of a transformation to timber cities. Nat. Commun. 13, 4889 (2022).

    Article  CAS  Google Scholar 

  42. Pomponi, F., Hart, J., Arehart, J. H. & D’Amico, B. Buildings as a global carbon sink? A reality check on feasibility limits. One Earth 3, 157–161 (2020).

    Article  Google Scholar 

  43. Creutzig, F. et al. in Climate Change 2022: Mitigation of Climate Change Change (eds Shukla, P. R. et al.) Ch. 5 (IPCC, Cambridge Univ. Press, 2022).

  44. Tuomisto, H. L. Challenges of assessing the environmental sustainability of cellular agriculture. Nat. Food 3, 801–803 (2022).

    Article  Google Scholar 

  45. Sinke, P., Swartz, E., Sanctorum, H., van der Giesen, C. & Odegard, I. Ex-ante life cycle assessment of commercial-scale cultivated meat production in 2030. Int. J. Life Cycle Assess. 28, 234–254 (2023).

    Article  Google Scholar 

  46. Towards Our Common Digital Future (WBGU, 2019); https://www.wbgu.de/fileadmin/user_upload/wbgu/publikationen/hauptgutachten/hg2019/pdf/WBGU_HGD2019_S.pdf

  47. Digitalization & Energy (IEA, 2017); https://doi.org/10.1787/9789264286276-en

  48. Transition to Shared Mobility: How Large Cities Can Deliver Inclusive Transport Services (ITF, 2017).

  49. Digital Technology and the Planet: Harnessing Computing to Achieve Net Zero (Royal Society, 2020).

  50. Forti, V., Balde, C. P., Kuehr, R. & Bel, G. The Global E-waste Monitor 2020: Quantities, Flows and the Circular Economy Potential (United Nations Univ., 2020).

  51. A New Circular Vision for Electronics: Time for a Global Reboot (World Economic Forum, 2019).

  52. Luckeneder, S., Giljum, S., Schaffartzik, A., Maus, V. & Tost, M. Surge in global metal mining threatens vulnerable ecosystems. Glob. Environ. Change 69, 102303 (2021). This paper assessed 3,000 mine sites and found that 79% of global metal ore extraction in 2019 originated from 5 of the 6 most species-rich biomes, with mining volumes doubling since 2000 in tropical moist forest ecosystems.

  53. Jowitt, S. M., Werner, T. T., Weng, Z. & Mudd, G. M. Recycling of the rare earth elements. Curr. Opin. Green. Sustain. Chem. 13, 1–7 (2018).

    Article  Google Scholar 

  54. Madhu, K., Pauliuk, S., Dhathri, S. & Creutzig, F. Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment. Nat. Energy 6, 1035–1044 (2021).

    Article  CAS  Google Scholar 

  55. Wilson, S. et al. Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith nickel mine, Western Australia: rates, controls and prospects for carbon neutral mining. Int. J. Greenh. Gas. Control 25, 121–140 (2014).

    Article  CAS  Google Scholar 

  56. Power, I. M. et al. Strategizing carbon-neutral mines: a case for pilot projects. Minerals 4, 399–436 (2014).

    Article  Google Scholar 

  57. Nijnens, J., Behrens, P., Kraan, O., Sprecher, B. & Kleijn, R. Energy transition will require substantially less mining than the current fossil system. Joule 7, 2408–2413 (2023).

    Article  Google Scholar 

  58. Bordoff, J. & O’Sullivan Meghan, L. Green upheaval: the new geopolitics of energy. Foreign Aff. 101, 68 (2022).

    Google Scholar 

  59. Owen, J. R., Kemp, D., Harris, J., Lechner, A. M. & Lèbre, É. Fast track to failure? Energy transition minerals and the future of consultation and consent. Energy Res. Soc. Sci. 89, 102665 (2022).

    Article  Google Scholar 

  60. Lèbre, É. et al. The social and environmental complexities of extracting energy transition metals. Nat. Commun. 11, 4823 (2020).

    Article  Google Scholar 

  61. Valenta, R. K., Kemp, D., Owen, J. R., Corder, G. D. & Lèbre, É. Re-thinking complex orebodies: consequences for the future world supply of copper. J. Clean. Prod. 220, 816–826 (2019).

    Article  Google Scholar 

  62. Franks, D. M. et al. Conflict translates environmental and social risk into business costs. Proc. Natl Acad. Sci. USA 111, 7576–7581 (2014).

    Article  CAS  Google Scholar 

  63. Some EU states baulking at streamlined mine permitting, says commissioner. MINING.COM https://www.mining.com/web/some-eu-states-baulking-at-streamlined-mine-permitting-says-commissioner/ (2023).

  64. Prno, J. & Slocombe, D. S. Exploring the origins of ‘social license to operate’ in the mining sector: Perspectives from governance and sustainability theories. Resour. Policy 37, 346–357 (2012).

    Article  Google Scholar 

  65. Moffat, K., Lacey, J., Zhang, A. & Leipold, S. The social licence to operate: a critical review. Forestry 89, 477–488 (2016).

    Article  Google Scholar 

  66. Stock, R. Illuminant intersections: injustice and inequality through electricity and water infrastructures at the Gujarat solar park in India. Energy Res. Soc. Sci. 82, 102309 (2021).

    Article  Google Scholar 

  67. Yenneti, K. & Day, R. Distributional justice in solar energy implementation in India: the case of Charanka solar park. J. Rural Stud. 46, 35–46 (2016).

    Article  Google Scholar 

  68. Kung, A., Holcombe, S., Hamago, J. & Kemp, D. Indigenous co-ownership of mining projects: a preliminary framework for the critical examination of equity participation. J. Energy Nat. Resour. Law 40, 413–435 (2022).

    Article  Google Scholar 

  69. Rao, N. D. & Wilson, C. Advancing energy and well-being research. Nat. Sustain. 5, 98–103 (2022).

    Article  Google Scholar 

  70. Song, L. et al. China’s bulk material loops can be closed but deep decarbonization requires demand reduction. Nat. Clim. Change 13, 1136–1143 (2023).

    Article  Google Scholar 

  71. Creutzig, F. et al. Leveraging digitalization for sustainability in urban transport. Glob. Sustain. 2, e14 (2019).

    Article  Google Scholar 

  72. Pauliuk, S. et al. Global scenarios of resource and emission savings from material efficiency in residential buildings and cars. Nat. Commun. 12, 5097 (2021).

    Article  CAS  Google Scholar 

  73. Springmann, M. et al. Mitigation potential and global health impacts from emissions pricing of food commodities. Nat. Clim. Change 7, 69–74 (2017).

    Article  Google Scholar 

  74. Hertwich, E. G. et al. Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics—a review. Environ. Res. Lett. 14, 043004 (2019).

    Article  CAS  Google Scholar 

  75. Ryen, E. G., Babbitt, C. W. & Williams, E. Consumption-weighted life cycle assessment of a consumer electronic product community. Environ. Sci. Technol. 49, 2549–2559 (2015).

    Article  CAS  Google Scholar 

  76. Graedel, T. E. & Miatto, A. Alloy profusion, spice metals, and resource loss by design. Sustainability 14, 7535 (2022).

    Article  CAS  Google Scholar 

  77. Franco, A., Shaker, M., Kalubi, D. & Hostettler, S. A review of sustainable energy access and technologies for healthcare facilities in the Global South. Sustain. Energy Technol. Assess. 22, 92–105 (2017).

    Google Scholar 

  78. Tanaka, S., Teshima, K. & Verhoogen, E. North–south displacement effects of environmental regulation: the case of battery recycling. Am. Econ. Rev. Insights 4, 271–288 (2022).

    Article  Google Scholar 

  79. Ádám, B. et al. From inequitable to sustainable e-waste processing for reduction of impact on human health and the environment. Environ. Res. 194, 110728 (2021).

    Article  Google Scholar 

  80. Gutberlet, J., Carenzo, S., Kain, J.-H. & Mantovani Martiniano de Azevedo, A. Waste picker organizations and their contribution to the circular economy: two case studies from a Global South perspective. Resources 6, 52 (2017).

    Article  Google Scholar 

  81. Pauliuk, S., Arvesen, A., Stadler, K. & Hertwich, E. G. Industrial ecology in integrated assessment models. Nat. Clim. Change 7, 13–20 (2017).

    Article  Google Scholar 

  82. Lima, A. T. et al. Climate mitigation models need to become circular – let’s start with the construction sector. Resour. Conserv. Recycl. 190, 106808 (2023).

    Article  Google Scholar 

  83. Hertwich, E. G. & Wood, R. The growing importance of scope 3 greenhouse gas emissions from industry. Environ. Res. Lett. 13, 104013 (2018).

    Article  Google Scholar 

  84. Zhong, X. et al. Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060. Nat. Commun. 12, 6126 (2021).

    Article  CAS  Google Scholar 

  85. Sen, B., Onat, N. C., Kucukvar, M. & Tatari, O. Material footprint of electric vehicles: a multiregional life cycle assessment. J. Clean. Prod. 209, 1033–1043 (2019).

    Article  Google Scholar 

  86. Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article  Google Scholar 

  87. Mastrucci, A., van Ruijven, B., Byers, E., Poblete-Cazenave, M. & Pachauri, S. Global scenarios of residential heating and cooling energy demand and CO2 emissions. Climatic Change 168, 14 (2021).

    Article  CAS  Google Scholar 

  88. Edelenbosch, O., Rovelli, D., Levesque, A., Marangoni, G. & Tavoni, M. Long term, cross-country effects of buildings insulation policies. Technol. Forecast. Soc. Change 170, 120887 (2021).

    Article  Google Scholar 

  89. Pehl, M. et al. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling. Nat. Energy 2, 939–945 (2017).

    Article  CAS  Google Scholar 

  90. Rolnick, D. et al. Tackling climate change with machine learning. ACM Comput. Surv. 55, 42 (2022).

    Google Scholar 

  91. Silva, M. C., Horta, I. M., Leal, V. & Oliveira, V. A spatially-explicit methodological framework based on neural networks to assess the effect of urban form on energy demand. Appl. Energy 202, 386–398 (2017).

    Article  Google Scholar 

  92. Milojevic-Dupont, N. et al. Learning from urban form to predict building heights. PLoS ONE 15, e0242010 (2020).

    Article  CAS  Google Scholar 

  93. Haberl, H. et al. High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany. Environ. Sci. Technol. 55, 3368–3379 (2021).

    Article  CAS  Google Scholar 

  94. Joshi, S. et al. High resolution global spatiotemporal assessment of rooftop solar photovoltaics potential for renewable electricity generation. Nat. Commun. 12, 5738 (2021).

    Article  CAS  Google Scholar 

  95. Kerner, H. et al. Rapid response crop maps in data sparse regions. Preprint at https://arxiv.org/abs/2006.16866 (2020).

  96. He, T. et al. Global 30 meters spatiotemporal 3D urban expansion dataset from 1990 to 2010. Sci. Data 10, 321 (2023).

    Article  Google Scholar 

  97. Dietrich, J. P., Popp, A. & Lotze-Campen, H. Reducing the loss of information and gaining accuracy with clustering methods in a global land-use model. Ecol. Model. 263, 233–243 (2013).

    Article  Google Scholar 

  98. Folberth, C. et al. Spatio-temporal downscaling of gridded crop model yield estimates based on machine learning. Agric. For. Meteorol. 264, 1–15 (2019).

    Article  Google Scholar 

  99. Creutzig, F. et al. Demand-side solutions to climate change mitigation consistent with high levels of well-being. Nat. Clim. Change 12, 36–46 (2022). This paper evidences the multiple benefits of demand-side strategies for managing resource consumption and resulting greenhouse emissions.

    Article  Google Scholar 

  100. Castro, C. G., Trevisan, A. H., Pigosso, D. C. A. & Mascarenhas, J. The rebound effect of circular economy: definitions, mechanisms and a research agenda. J. Clean. Prod. 345, 131136 (2022). A much-needed conceptualization of the rebound effect in circular economy and associated systematic literature review.

    Article  Google Scholar 

  101. Haites, E. et al. Contribution of carbon pricing to meeting a mid-century net zero target. Clim. Policy 24, 1–12 (2023).

    Article  Google Scholar 

  102. Creutzig, F. et al. Assessing human and environmental pressures of global land-use change 2000–2010. Glob. Sustain. 2, e1 (2019).

    Article  Google Scholar 

  103. UNEP IRP Global Material Flows Database (UNEP, accessed January 2024); https://unep-irp.fineprint.global/

  104. World Energy Outlook 2023 (IEA, 2023).

  105. Shamoon, A. et al. Environmental impact of energy production and extraction of materials—a review. Mater. Today Proc. 57, 936–941 (2022).

    Article  CAS  Google Scholar 

  106. Thomas, M., Partridge, T., Harthorn, B. H. & Pidgeon, N. Deliberating the perceived risks, benefits, and societal implications of shale gas and oil extraction by hydraulic fracturing in the US and UK. Nat. Energy 2, 17054 (2017).

    Article  Google Scholar 

  107. Johnston, J. E., Lim, E. & Roh, H. Impact of upstream oil extraction and environmental public health: a review of the evidence. Sci. Total Environ. 657, 187–199 (2019).

    Article  CAS  Google Scholar 

  108. Baker, J. M. & Westman, C. N. Extracting knowledge: social science, environmental impact assessment, and Indigenous consultation in the oil sands of Alberta, Canada. Extr. Ind. Soc. 5, 144–153 (2018).

    Google Scholar 

  109. The Role of Critical Minerals in Clean Energy Transitions (IEA, 2021).

  110. van der Voort, N. & Vanclay, F. Social impacts of earthquakes caused by gas extraction in the province of Groningen, The Netherlands. Environ. Impact Assess. Rev. 50, 1–15 (2015).

    Article  Google Scholar 

  111. Nkem, A. C., Topp, S. M., Devine, S., Li, W. W. & Ogaji, D. S. The impact of oil industry-related social exclusion on community wellbeing and health in African countries. Public Health 10, 858512 (2022).

    Google Scholar 

  112. Ogwang, T. & Vanclay, F. Social impacts of land acquisition for oil and gas development in Uganda. Land 8, 109 (2019).

    Article  Google Scholar 

  113. Bello, T. & Nwaeke, T. Impacts of oil exploration (oil and gas conflicts: Niger Delta as a case study). Preprint at SSRN https://ssrn.com/abstract=4137463 (2022).

  114. Masood, N., Hudson-Edwards, K. & Farooqi, A. True cost of coal: coal mining industry and its associated environmental impacts on water resource development. J. Sustain. Min. 19, 1 (2020).

    Google Scholar 

  115. Feng, Y., Wang, J., Bai, Z. & Reading, L. Effects of surface coal mining and land reclamation on soil properties: a review. Earth Sci. Rev. 191, 12–25 (2019).

    Article  CAS  Google Scholar 

  116. Cabernard, L. & Pfister, S. Hotspots of mining-related biodiversity loss in global supply chains and the potential for reduction through renewable electricity. Environ. Sci. Technol. 56, 16357–16368 (2022).

    Article  CAS  Google Scholar 

  117. De Valck, J., Williams, G. & Kuik, S. Does coal mining benefit local communities in the long run? A sustainability perspective on regional queensland. Aust. Resour. Policy 71, 102009 (2021).

    Article  Google Scholar 

  118. Associated Press Massive mine collapse in China leaves at least 5 dead and 48 missing. NBC News https://www.nbcnews.com/news/world/massive-mine-collapse-china-missing-rcna71920 (2023).

  119. Coal Information: Overview: Production (IEA, 2023); https://www.iea.org/reports/coal-information-overview/production

  120. Mineral Commodities SummaryLithium (USGS, 2023); https://pubs.usgs.gov/periodicals/mcs2023/mcs2023-lithium.pdf

  121. Ambrose, H. & Kendall, A. Understanding the future of lithium: part 1, resource model. J. Ind. Ecol. 24, 80–89 (2020).

    Article  Google Scholar 

  122. Xu, C. et al. Future material demand for automotive lithium-based batteries. Commun. Mater. 1, 99 (2020).

    Article  Google Scholar 

  123. Kaunda, R. B. Potential environmental impacts of lithium mining. J. Energy Nat. Resour. Law 38, 237–244 (2020).

    Article  Google Scholar 

  124. Agusdinata, D. B., Liu, W., Eakin, H. & Romero, H. Socio-environmental impacts of lithium mineral extraction: towards a research agenda. Environ. Res. Lett. 13, 123001 (2018).

    Article  CAS  Google Scholar 

  125. Critical Raw Materials (European Comission, 2023).

  126. U.S. Geological Surveys Releases 2022 List of Critical Minerals (USGS, 2022).

  127. Final List of Critical Minerals 2022 (IEA, 2023).

  128. Mineral Commodities SummaryCobalt (USGS, 2023); https://pubs.usgs.gov/periodicals/mcs2023/mcs2023-cobalt.pdf

  129. van der Meide, M., Harpprecht, C., Northey, S., Yang, Y. & Steubing, B. Effects of the energy transition on environmental impacts of cobalt supply: a prospective life cycle assessment study on future supply of cobalt. J. Ind. Ecol. 26, 1631–1645 (2022).

    Article  Google Scholar 

  130. Sovacool, B. K. The precarious political economy of cobalt: balancing prosperity, poverty, and brutality in artisanal and industrial mining in the Democratic Republic of the Congo. Extr. Ind. Soc. 6, 915–939 (2019).

    Google Scholar 

  131. Brusselen et al. Metal mining and birth defects: a case-control study in Lubumbashi, Democratic Republic of the Congo. Lancet Planet. Health 4, 158–167 (2020).

    Article  Google Scholar 

  132. van den Brink, S., Kleijn, R., Sprecher, B. & Tukker, A. Identifying supply risks by mapping the cobalt supply chain. Resour. Conserv. Recycl. 156, 104743 (2020).

    Article  Google Scholar 

  133. Net Zero Roadmap: A Global Pathway to Keep the 1.5°C Goal in Reach (IEA, 2023).

  134. Kermeli, K. et al. The scope for better industry representation in long-term energy models: modeling the cement industry. Appl. Energy 240, 964–985 (2019). A good illustration of the importance of capturing cross-sectoral relationships between industries in IAMs.

  135. Watari, T., Cabrera Serrenho, A., Gast, L., Cullen, J. & Allwood, J. Feasible supply of steel and cement within a carbon budget is likely to fall short of expected global demand. Nat. Commun. 14, 7895 (2023).

    Article  CAS  Google Scholar 

  136. Lamb, W. F. et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ. Res. Lett. 16, 73005 (2021). Comprehensive analysis and synthesis of knowledge on sectoral GHG emission trends worldwide.

    Article  CAS  Google Scholar 

  137. Kittipongvises, S. Assessment of environmental impacts of limestone quarrying operations in Thailand. Environ. Clim. Technol. 20, 67–83 (2017).

    Article  CAS  Google Scholar 

  138. Ganapathi, H. & Phukan, M. in Environmental Processes and Management: Tools and Practices (eds Singh, R. M. et al.) 121–134 (Springer, 2020).

  139. PTI Seven killed as part of limestone mine collapses in Chhattisgarh village. The Indian Express https://indianexpress.com/article/india/seven-killed-limestone-mine-collapses-chhattisgarh-village-bastar-8302732/ (2022).

  140. Caserini, S., Storni, N. & Grosso, M. The availability of limestone and other raw materials for ocean alkalinity enhancement. Glob. Biogeochem. Cycles 36, e2021GB007246 (2022).

    Article  CAS  Google Scholar 

  141. Global Material Resources Outlook to 2060: Economic Drivers and Environmental Consequences (OECD, 2019); https://doi.org/10.1787/9789264307452-en

  142. Fry, M. Cement, carbon dioxide, and the ‘necessity’ narrative: a case study of Mexico. Geoforum 49, 127–138 (2013).

    Article  Google Scholar 

  143. Cacciuttolo, C. & Cano, D. Environmental impact assessment of mine tailings spill considering metallurgical processes of gold and copper mining: case studies in the Andean countries of Chile and Peru. Water 14, 3057 (2022).

    Article  CAS  Google Scholar 

  144. Arratia-Solar, A. & Paredes, D. Commodity price and fatalities in mining—evidence from copper regions in Chile. Resour. Policy 82, 103489 (2023).

    Article  Google Scholar 

  145. Raw Materials Profiles: Dysprosium (Raw Materials Information System, European Commission Joint Research Centre, 2023); https://rmis.jrc.ec.europa.eu/rmp/Dysprosium

  146. Kalt, G. et al. Material stocks in global electricity infrastructures—an empirical analysis of the power sector’s stock-flow-service nexus. Resour. Conserv. Recycl. 173, 105723 (2021).

    Article  CAS  Google Scholar 

  147. Watari, T. et al. Global copper cycles and greenhouse gas emissions in a 1.5 °C world. Resour. Conserv. Recycl. 179, 106118 (2022).

    Article  CAS  Google Scholar 

  148. Mineral Commodities Summary—Rare Earths (USGS, 2023); https://pubs.usgs.gov/periodicals/mcs2023/mcs2023-rare-earths.pdf

  149. Watari, T., Nansai, K. & Nakajima, K. Review of critical metal dynamics to 2050 for 48 elements. Resour. Conserv. Recycl. 155, 104669 (2020). This paper compiles several hundred estimates for future global demand of 48 potentially critical metals and stresses the need to include component reuse and remanufacturing as well as the linkage between host and by-product metals in future scenario assessments.

    Article  Google Scholar 

  150. Langkau, S. & Erdmann, M. Environmental impacts of the future supply of rare earths for magnet applications. J. Ind. Ecol. 25, 1034–1050 (2021).

    Article  CAS  Google Scholar 

  151. Bai, J. et al. Evaluation of resource and environmental carrying capacity in rare earth mining areas in China. Sci. Rep. 12, 6105 (2022).

    Article  CAS  Google Scholar 

  152. Bradsher, K. In China, illegal rare earth mines face crackdown. The New York Times (29 December 2010); https://www.nytimes.com/2010/12/30/business/global/30smuggle.html

  153. Lima, A. T. & Ottosen, L. Recovering rare earth elements from contaminated soils: critical overview of current remediation technologies. Chemosphere 265, 129163 (2021).

    Article  CAS  Google Scholar 

  154. Wang, S. et al. Future demand for electricity generation materials under different climate mitigation scenarios. Joule 7, 309–332 (2023).

    Article  CAS  Google Scholar 

  155. Dibattista, I., Camara, A. R., Molderez, I., Benassai, E. M. & Palozza, F. Socio-environmental impact of mining activities in Guinea: the case of bauxite extraction in the region of Boké. J. Clean. Prod. 387, 135720 (2023).

    Article  Google Scholar 

  156. Li, G., Yang, H.-X., Yuan, C.-M. & Eckhoff, R. K. A catastrophic aluminium-alloy dust explosion in China. J. Loss Prev. Process Ind. 39, 121–130 (2016).

    Article  CAS  Google Scholar 

  157. Bobba, S., Carrara, S., Huisman, J., Mathieux, F. & Pavel, C. Critical Raw Materials for Strategic Technologies and Sectors in the EU: A Foresight Study (Publications Office of the European Union, 2020); https://doi.org/10.2873/865242

  158. Lima, A. T. et al. Strengths and weaknesses of a hybrid post-disaster management approach: the Doce River (Brazil) mine-tailing dam burst. Environ. Manag. 65, 711–724 (2020).

    Article  Google Scholar 

  159. Toirres, A., Brandt, J., Lear, K. & Lin, J. A looming tragedy of the sand commons: increasing sand extraction, trade, and consumption pose global sustainability challenges. Science 357, 970–971 (2017).

    Article  Google Scholar 

  160. Zhong, X., Deetman, S., Tukker, A. & Behrens, P. Increasing material efficiencies of buildings to address the global sand crisis. Nat. Sustain. 5, 389–392 (2022).

    Article  Google Scholar 

  161. Rentier, E. S. & Cammeraat, L. H. The environmental impacts of river sand mining. Sci. Total Environ. 838, 155877 (2022).

    Article  CAS  Google Scholar 

  162. Torres, A. et al. Sustainability of the global sand system in the Anthropocene. One Earth 4, 639–650 (2021).

    Article  Google Scholar 

  163. Sieferle, R. & Müller-Herold, U. P. Überfluß und Überleben-Risiko, Ruin und Luxus in primitiven Gesellschaften. GAIA Ecol. Perspect. Sci. Soc. 5, 135–143 (1996).

    Google Scholar 

Download references

Acknowledgements

The authors disclose support for the research of this work from Horizon Europe research and innovation programme under grant agreement numbers 101056810 (F.C., P.B., I.A., H.H., V.K., A.M., N.M.-D., F.N., M.S., F.W. and D.W.), 101056868 (O.E., T.F., E.H., S.P. and D.v.V.), 101056862 (S.G.S. and A.T.L.), 101003083 (C.W.) and 853487 (E.V.). This work was also supported by the Energy Demand Changes Induced by Technological and Social Innovations (EDITS) network, an initiative coordinated by the Research Institute of Innovative Technology for the Earth (RITE) and the International Institute for Applied Systems Analysis (IIASA) and funded by the Ministry of Economy, Trade and Industry (METI), Japan.

Author information

Authors and Affiliations

Authors

Contributions

F.C. conceptualized the paper. S.G.S. designed Fig. 1 and Table 1 with input from P.B., H.H., S.L., A.T.L., F.N., S.P. and D.W. F.C., S.G.S., S.L., P.B., I.A., O.E., T.F., H.H., E.H., V.K., A.T.L., T.M., A.M., N.M.-D., F.N., S.P., M.S., E.V., D.v.V., F.W., D.W. and C.W. wrote the paper.

Corresponding author

Correspondence to Felix Creutzig.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Creutzig, F., Simoes, S.G., Leipold, S. et al. Demand-side strategies key for mitigating material impacts of energy transitions. Nat. Clim. Chang. 14, 561–572 (2024). https://doi.org/10.1038/s41558-024-02016-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-024-02016-z

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene