Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

No respite from permafrost-thaw impacts in the absence of a global tipping point

Abstract

Arctic permafrost, the largest non-seasonal component of Earth’s cryosphere, contains a substantial climate-sensitive carbon pool. The existence of a global tipping point, a warming threshold beyond which permafrost thaw would accelerate and become self-perpetuating, remains debated. Here we provide an integrative Perspective on this question, suggesting that despite several permafrost-thaw feedbacks driving rapid thaw and irreversible ground-ice loss at local to regional scales, the accumulated response of Arctic permafrost to climate warming remains quasilinear. We argue that in the absence of a global tipping point there is no safety margin within which permafrost loss would be acceptable. Instead, each increment of global warming subjects more land areas underlain by permafrost to thaw, causing detrimental local impacts and global feedbacks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Responses of equilibrium permafrost area and carbon content to an increase in GMST.
Fig. 2: Map of Arctic permafrost sub-regions.
Fig. 3: Illustrations and example simulations of processes driving rapid local-scale permafrost thaw.
Fig. 4: Sub-region responses of equilibrium permafrost extent to an increase in GMST.
Fig. 5: Model estimates of twenty-first-century permafrost carbon emissions and warming feedbacks.

Similar content being viewed by others

Data availability

This work is not based on original data.

Code availability

The computer code and input data used for the geospatial analyses (Figs. 1 and 4) is deposited at https://doi.org/10.5281/zenodo.8366476 (ref. 134).

References

  1. Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nature Commun. 10, 264 (2019).

    Article  Google Scholar 

  2. Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J. & Romanovsky, V. E. The changing thermal state of permafrost. Nat. Rev. Earth Environ. 3, 10–23 (2022).

    Article  Google Scholar 

  3. Koven, C. D., Riley, W. J. & Stern, A. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth system models. J. Clim. 26, 1877–1900 (2013).

    Article  Google Scholar 

  4. McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 3882–3887 (2018).

    Article  Google Scholar 

  5. Burke, E. J., Zhang, Y. & Krinner, G. Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. Cryosphere 14, 3155–3174 (2020).

    Article  Google Scholar 

  6. Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    Article  CAS  Google Scholar 

  7. Schuur, E. A. et al. Permafrost and climate change: carbon cycle feedbacks from the warming Arctic. Annu. Rev. Environ. Resour. 47, 343–371 (2022).

    Article  Google Scholar 

  8. Permafrost: Essential Climate Variable (ECV) Factsheet (GCOS, 2023); https://gcos.wmo.int/en/essential-climate-variables/permafrost

  9. Nitzbon, J., Krinner, G., Schneider von Deimling, T., Werner, M. & Langer, M. First quantification of the permafrost heat sink in the Earth’s climate system. Geophys. Res. Lett. 50, e2022GL102053 (2023).

    Article  CAS  Google Scholar 

  10. von Schuckmann, K. et al. Heat stored in the Earth system 1960–2020: where does the energy go? Earth Syst. Sci. Data 15, 1675–1709 (2023).

    Article  Google Scholar 

  11. Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    Article  CAS  Google Scholar 

  12. Lenton, T. M. Arctic climate tipping points. Ambio 41, 10–22 (2012).

    Article  Google Scholar 

  13. Lenton, T. M. et al. Climate tipping points — too risky to bet against. Nature 575, 592–595 (2019).

    Article  CAS  Google Scholar 

  14. Schellnhuber, H. J., Rahmstorf, S. & Winkelmann, R. Why the right climate target was agreed in Paris. Nat. Clim. Change 6, 649–653 (2016).

    Article  Google Scholar 

  15. Steffen, W. et al. Trajectories of the Earth system in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).

    Article  CAS  Google Scholar 

  16. Armstrong McKay, D. I. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022). This paper synthesizes knowledge on climate tipping points, distinguishing between permafrost abrupt thaw as a regional impact tipping element and permafrost collapse as a potential global core tipping element.

    Article  Google Scholar 

  17. Canadell, J. et al. in IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 5 (Cambridge Univ. Press, 2021).

  18. Chadburn, S. E. et al. An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Change 7, 340–344 (2017). This paper suggests that circum-Arctic permafrost extent will decline gradually under global warming.

    Article  Google Scholar 

  19. Lawrence, D. M., Slater, A. G. & Swenson, S. C. Simulation of present-day and future permafrost and seasonally frozen ground conditions in CCSM4. J. Clim. 25, 2207–2225 (2012).

    Article  Google Scholar 

  20. Slater, A. G. & Lawrence, D. M. Diagnosing present and future permafrost from climate models. J. Clim. 26, 5608–5623 (2013).

    Article  Google Scholar 

  21. Guo, D. & Wang, H. CMIP5 permafrost degradation projection: a comparison among different regions. J. Geophys. Res. Atmos. 121, 4499–4517 (2016). This study finds quasi-linear sensitivities of regional permafrost extent to warming in the CMIP5 model ensemble.

    Article  Google Scholar 

  22. Andresen, C. G. et al. Soil moisture and hydrology projections of the permafrost region - a model intercomparison. Cryosphere 14, 445–459 (2020).

    Article  Google Scholar 

  23. Drijfhout, S. et al. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl Acad. Sci. USA 112, E5777–E5786 (2015).

    Article  CAS  Google Scholar 

  24. Eliseev, A. V., Demchenko, P. F., Arzhanov, M. M. & Mokhov, I. I. Transient hysteresis of near-surface permafrost response to external forcing. Clim. Dyn. 42, 1203–1215 (2014).

    Article  Google Scholar 

  25. Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).

    Article  Google Scholar 

  26. Koven, C. D. et al. A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Phil. Trans. R. Soc. A 373, 20140423 (2015).

    Article  Google Scholar 

  27. Burke, E. J. et al. Quantifying uncertainties of permafrost carbon–climate feedbacks. Biogeosciences 14, 3051–3066 (2017).

    Article  CAS  Google Scholar 

  28. Nitzbon, J. et al. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate. Nat. Commun. 11, 2201 (2020).

    Article  CAS  Google Scholar 

  29. Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    Article  CAS  Google Scholar 

  30. O’Neill, H. B., Roy-Leveillee, P., Lebedeva, L. & Ling, F. Recent advances (2010–2019) in the study of taliks. Permafr. Periglac. Process. 31, 346–357 (2020).

    Article  Google Scholar 

  31. Gibson, C. M. et al. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Commun. 9, 3041 (2018).

    Article  Google Scholar 

  32. Rey, D. M. et al. Wildfire-initiated talik development exceeds current thaw projections: observations and models from Alaska’s continuous permafrost zone. Geophys. Res. Lett. 47, e2020GL087565 (2020).

    Article  Google Scholar 

  33. Farquharson, L. M., Romanovsky, V. E., Kholodov, A. & Nicolsky, D. Sub-aerial talik formation observed across the discontinuous permafrost zone of Alaska. Nat. Geosci. 15, 475–481 (2022). This paper suggests that regionally coherent and synchronous talik formation is possible during particularly warm and snow-rich winters.

    Article  CAS  Google Scholar 

  34. Connon, R., Devoie, E., Hayashi, M., Veness, T. & Quinton, W. The influence of shallow taliks on permafrost thaw and active layer dynamics in subarctic Canada. J. Geophys. Res. Earth Surf. 123, 281–297 (2018).

    Article  Google Scholar 

  35. Devoie, E. G., Craig, J. R., Connon, R. F. & Quinton, W. L. Taliks: a tipping point in discontinuous permafrost degradation in peatlands. Water Resour. Res. 55, 9838–9857 (2019). An in-depth study of hydrothermal dynamics in discontinuous permafrost, arguing that talik formation shows tipping dynamics.

    Article  Google Scholar 

  36. Rangel, R. C. et al. Geophysical observations of taliks below drained lake basins on the Arctic Coastal Plain of Alaska. J. Geophys. Res. Solid Earth 126, e2020JB020889 (2021).

    Article  Google Scholar 

  37. Sjöberg, Y. et al. Thermal effects of groundwater flow through subarctic fens: a case study based on field observations and numerical modeling. Water Resour. Res. 52, 1591–1606 (2016).

    Article  Google Scholar 

  38. Etzelmüller, B. et al. Rapid warming and degradation of mountain permafrost in Norway and Iceland. Cryosphere 17, 5477–5497 (2023).

    Article  Google Scholar 

  39. Jorgenson, M. T. et al. Resilience and vulnerability of permafrost to climate change. Can. J. For. Res. 40, 1219–1236 (2010).

    Article  Google Scholar 

  40. Jafarov, E. E., Romanovsky, V. E., Genet, H., McGuire, A. D. & Marchenko, S. S. The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate. Environ. Res. Lett. 8, 035030 (2013).

    Article  Google Scholar 

  41. Brown, D. R. N. et al. Interactive effects of wildfire and climate on permafrost degradation in Alaskan lowland forests. J. Geophys. Res. Biogeosci. 120, 1619–1637 (2015).

    Article  Google Scholar 

  42. Grosse, G., Jones, B. & Arp, C. in Treatise on Geomorphology (ed. Shroder, J. F) 325–353 (Academic Press, 2013).

  43. Westermann, S. et al. Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3. Geosci. Model Dev. 9, 523–546 (2016).

    Article  Google Scholar 

  44. Alexeev, V. A., Arp, C. D., Jones, B. M. & Cai, L. Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska. Environ. Res. Lett. 11, 074022 (2016).

    Article  Google Scholar 

  45. Arp, C. D. et al. Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate. Geophys. Res. Lett. 43, 6358–6365 (2016).

    Article  Google Scholar 

  46. Kokelj, S. V. & Jorgenson, M. T. Advances in thermokarst research. Permafr. Periglac. Process. 24, 108–119 (2013).

    Article  Google Scholar 

  47. Grosse, G. et al. Vulnerability of high-latitude soil organic carbon in North America to disturbance. J. Geophys. Res. Biogeosci. 116, G00K06 (2011).

    Article  Google Scholar 

  48. Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9, 312–318 (2016).

    Article  CAS  Google Scholar 

  49. Nitzbon, J. et al. Pathways of ice-wedge degradation in polygonal tundra under different hydrological conditions. Cryosphere 13, 1089–1123 (2019).

    Article  Google Scholar 

  50. Farquharson, L. M. et al. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the canadian high Arctic. Geophys. Res. Lett. 46, 6681–6689 (2019).

    Article  Google Scholar 

  51. Abolt, C. J., Young, M. H., Atchley, A. L., Harp, D. R. & Coon, E. T. Feedbacks between surface deformation and permafrost degradation in ice wedge polygons, Arctic Coastal Plain, Alaska. J. Geophys. Res. Earth Surf. 125, e2019JF005349 (2020).

    Article  Google Scholar 

  52. Burn, C. R., Lewkowicz, A. G. & Wilson, M. A. Long-term field measurements of climate-induced thaw subsidence above ice wedges on hillslopes, western Arctic Canada. Permafr. Periglac. Process. 32, 261–276 (2021).

    Article  Google Scholar 

  53. Jorgenson, M. T. et al. Rapid transformation of tundra ecosystems from ice-wedge degradation. Glob. Planet. Change 216, 103921 (2022).

    Article  Google Scholar 

  54. Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E. & Boike, J. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and subarctic. Nat. Commun. 9, 5423 (2018).

    Article  CAS  Google Scholar 

  55. Nitze, I., Cooley, S. W., Duguay, C. R., Jones, B. M. & Grosse, G. The catastrophic thermokarst lake drainage events of 2018 in northwestern Alaska: fast-forward into the future. Cryosphere 14, 4279–4297 (2020).

    Article  Google Scholar 

  56. Lara, M. J., Chen, Y. & Jones, B. M. Recent warming reverses forty-year decline in catastrophic lake drainage and hastens gradual lake drainage across northern Alaska. Environ. Res. Lett. 16, 124019 (2021).

    Article  Google Scholar 

  57. Nitze, I. et al. Landsat-based trend analysis of lake dynamics across northern permafrost regions. Remote Sensing 9, 640 (2017).

    Article  Google Scholar 

  58. Jones, B. M. et al. Identifying historical and future potential lake drainage events on the western Arctic Coastal Plain of Alaska. Permafr. Periglac. Process. 31, 110–127 (2020).

    Article  Google Scholar 

  59. Webb, E. E. et al. Permafrost thaw drives surface water decline across lake-rich regions of the Arctic. Nat. Clim. Change 12, 841–846 (2022).

    Article  CAS  Google Scholar 

  60. Morgenstern, A. et al. Thermo-erosional valleys in Siberian ice-rich permafrost. Permafr. Periglac. Process. 32, 59–75 (2021).

    Article  Google Scholar 

  61. Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., Segal, R. & Lacelle, D. Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology 45, 371–374 (2017).

    Article  Google Scholar 

  62. Runge, A., Nitze, I. & Grosse, G. Remote sensing annual dynamics of rapid permafrost thaw disturbances with LandTrendr. Remote Sens. Environ. 268, 112752 (2022).

    Article  Google Scholar 

  63. Günther, F. et al. Observing Muostakh disappear: permafrost thaw subsidence and erosion of a ground-ice-rich island in response to Arctic summer warming and sea ice reduction. Cryosphere 9, 151–178 (2015).

    Article  Google Scholar 

  64. Kanevskiy, M. et al. Degradation and stabilization of ice wedges: implications for assessing risk of thermokarst in northern Alaska. Geomorphology 297, 20–42 (2017). This paper synthesizes feedback mechanisms in ice-wedge polygon evolution and suggests low likelihood of new thaw lake formation in northern Alaska.

    Article  Google Scholar 

  65. Zwieback, S., Boike, J., Marsh, P. & Berg, A. Debris cover on thaw slumps and its insulative role in a warming climate. Earth Surf. Process. Landf. 45, 2631–2646 (2020).

    Article  Google Scholar 

  66. Lantz, T. C. & Kokelj, S. V. Increasing rates of retrogressive thaw slump activity in the Mackenzie Delta region, N.W.T., Canada. Geophys. Res. Lett. 35, L06502 (2008).

    Article  Google Scholar 

  67. Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a high Arctic environment. Nat. Commun. 10, 1329 (2019).

    Article  Google Scholar 

  68. Jorgenson, M. T. et al. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization. J. Geophys. Res. Earth Surf. 120, 2280–2297 (2015).

    Article  Google Scholar 

  69. Nitzbon, J. et al. Effects of multi-scale heterogeneity on the simulated evolution of ice-rich permafrost lowlands under a warming climate. Cryosphere 15, 1399–1422 (2021).

    Article  Google Scholar 

  70. Painter, S. L., Coon, E. T., Khattak, A. J. & Jastrow, J. D. Drying of tundra landscapes will limit subsidence-induced acceleration of permafrost thaw. Proc. Natl Acad. Sci. USA 120, e2212171120 (2023).

    Article  CAS  Google Scholar 

  71. Fisher, J. P. et al. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest. Glob. Change Biol. 22, 3127–3140 (2016).

    Article  Google Scholar 

  72. Stuenzi, S. M. et al. Sensitivity of ecosystem-protected permafrost under changing boreal forest structures. Environ. Res. Lett. 16, 084045 (2021).

    Article  Google Scholar 

  73. Wilcox, E. J. et al. Tundra shrub expansion may amplify permafrost thaw by advancing snowmelt timing. Arctic Sci. 5, 202–217 (2019).

    Article  Google Scholar 

  74. Kropp, H. et al. Shallow soils are warmer under trees and tall shrubs across Arctic and boreal ecosystems. Environ. Res. Lett. 16, 015001 (2020).

    Article  Google Scholar 

  75. Domine, F. et al. Permafrost cooled in winter by thermal bridging through snow-covered shrub branches. Nat. Geosci. 15, 554–560 (2022).

    Article  CAS  Google Scholar 

  76. Blok, D. et al. Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Glob. Change Biol. 16, 1296–1305 (2010).

    Article  Google Scholar 

  77. Grünberg, I., Wilcox, E. J., Zwieback, S., Marsh, P. & Boike, J. Linking tundra vegetation, snow, soil temperature, and permafrost. Biogeosciences 17, 4261–4279 (2020).

    Article  Google Scholar 

  78. Stuenzi, S. M. et al. Thermohydrological impact of forest disturbances on ecosystem-protected permafrost. J. Geophys. Res. Biogeosci. 127, e2021JG006630 (2022).

    Article  Google Scholar 

  79. Heijmans, M. M. P. D. et al. Tundra vegetation change and impacts on permafrost. Nat. Rev. Earth Environ. 3, 68–84 (2022).

    Article  Google Scholar 

  80. Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).

    Article  Google Scholar 

  81. Li, X.-Y. et al. Influences of forest fires on the permafrost environment: a review. Adv. Clim. Change Res. 12, 48–65 (2021).

    Article  Google Scholar 

  82. Johnstone, J. F., Hollingsworth, T. N., Chapin, F. S. III & Mack, M. C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Change Biol. 16, 1281–1295 (2010).

    Article  Google Scholar 

  83. Zhang, Y., Wolfe, S. A., Morse, P. D., Olthof, I. & Fraser, R. H. Spatiotemporal impacts of wildfire and climate warming on permafrost across a subarctic region, Canada. J. Geophys. Res. Earth Surf. 120, 2338–2356 (2015).

    Article  Google Scholar 

  84. Alexander, H. D. & Mack, M. C. A canopy shift in interior Alaskan boreal forests: consequences for above- and belowground carbon and nitrogen pools during post-fire succession. Ecosystems 19, 98–114 (2016).

    Article  CAS  Google Scholar 

  85. Zhang, N., Yasunari, T. & Ohta, T. Dynamics of the larch taiga–permafrost coupled system in Siberia under climate change. Environ. Res. Lett. 6, 024003 (2011).

    Article  Google Scholar 

  86. Rogers, B. M., Soja, A. J., Goulden, M. L. & Randerson, J. T. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8, 228–234 (2015).

    Article  CAS  Google Scholar 

  87. Herzschuh, U. Legacy of the Last Glacial on the present-day distribution of deciduous versus evergreen boreal forests. Glob. Ecol. Biogeogr. 29, 198–206 (2020).

    Article  Google Scholar 

  88. Scheffer, M., Hirota, M., Holmgren, M., Nes, E. H. V. & Chapin, F. S. Thresholds for boreal biome transitions. Proc. Natl Acad. Sci. USA 109, 21384–21389 (2012).

    Article  CAS  Google Scholar 

  89. Pearson, R. G. et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Change 3, 673–677 (2013).

    Article  Google Scholar 

  90. Berner, L. T. & Goetz, S. J. Satellite observations document trends consistent with a boreal forest biome shift. Glob. Change Biol. 28, 3275–3292 (2022).

    Article  CAS  Google Scholar 

  91. Khvorostyanov, D. V., Ciais, P., Krinner, G. & Zimov, S. A. Vulnerability of east Siberia’s frozen carbon stores to future warming. Geophys. Res. Lett. 35, L10703 (2008).

    Article  Google Scholar 

  92. Strauss, J. et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth Sci. Rev. 172, 75–86 (2017).

    Article  CAS  Google Scholar 

  93. Khvorostyanov, D. V., Krinner, G., Ciais, P., Heimann, M. & Zimov, S. A. Vulnerability of permafrost carbon to global warming. Part I: model description and role of heat generated by organic matter decomposition. Tellus B 60, 250–264 (2008).

    Article  Google Scholar 

  94. Khvorostyanov, D. V. et al. Vulnerability of permafrost carbon to global warming. Part II: sensitivity of permafrost carbon stock to global warming. Tellus B 60, 265–275 (2008).

    Article  Google Scholar 

  95. Hollesen, J., Matthiesen, H., Møller, A. B. & Elberling, B. Permafrost thawing in organic Arctic soils accelerated by ground heat production. Nat. Clim. Change 5, 574–578 (2015).

    Article  Google Scholar 

  96. Koven, C. D. et al. Permafrost carbon–climate feedbacks accelerate global warming. Proc. Natl Acad. Sci. USA 108, 14769–14774 (2011).

    Article  CAS  Google Scholar 

  97. de Vrese, P., Stacke, T., Kleinen, T. & Brovkin, V. Diverging responses of high-latitude CO2 and CH4 emissions in idealized climate change scenarios. Cryosphere 15, 1097–1130 (2021).

    Article  Google Scholar 

  98. Wieczorek, S., Ashwin, P., Luke, C. M. & Cox, P. M. Excitability in ramped systems: the compost-bomb instability. Proc. R. Soc. A 467, 1243–1269 (2011).

    Article  Google Scholar 

  99. Jongejans, L. L. et al. Molecular biomarkers in Batagay megaslump permafrost deposits reveal clear differences in organic matter preservation between glacial and interglacial periods. Cryosphere 16, 3601–3617 (2022).

    Article  Google Scholar 

  100. Jongejans, L. L. et al. Organic matter characteristics in Yedoma and thermokarst deposits on Baldwin Peninsula, west Alaska. Biogeosciences 15, 6033–6048 (2018).

    Article  CAS  Google Scholar 

  101. de Vrese, P. et al. Representation of soil hydrology in permafrost regions may explain large part of inter-model spread in simulated Arctic and subarctic climate. Cryosphere 17, 2095–2118 (2023). This paper shows that permafrost region hydrology can affect global climate patterns and the state of tipping elements.

    Article  Google Scholar 

  102. Klose, A. K., Wunderling, N., Winkelmann, R. & Donges, J. F. What do we mean, ‘tipping cascade’? Environ. Res. Lett. 16, 125011 (2021).

    Article  CAS  Google Scholar 

  103. Lindgren, A., Hugelius, G. & Kuhry, P. Extensive loss of past permafrost carbon but a net accumulation into present-day soils. Nature 560, 219–222 (2018).

    Article  CAS  Google Scholar 

  104. Bruhwiler, L., Parmentier, F.-J. W., Crill, P., Leonard, M. & Palmer, P. I. The Arctic carbon cycle and its response to changing climate. Curr. Clim. Change Rep. 7, 14–34 (2021).

    Article  Google Scholar 

  105. Rößger, N., Sachs, T., Wille, C., Boike, J. & Kutzbach, L. Seasonal increase of methane emissions linked to warming in Siberian tundra. Nat. Clim. Change 12, 1031–1036 (2022).

    Article  Google Scholar 

  106. Abbott, B. W. et al. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environ. Res. Lett. 11, 034014 (2016).

    Article  Google Scholar 

  107. Virkkala, A.-M. et al. Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: regional patterns and uncertainties. Glob. Change Biol. 27, 4040–4059 (2021).

    Article  CAS  Google Scholar 

  108. Hugelius, G. et al. Two decades of permafrost region CO2, CH4, and N2O budgets suggest a small net greenhouse gas source to the atmosphere. Preprint at ESS Open Archive https://doi.org/10.22541/essoar.169444320.01914726/v1 (2023).

  109. Gasser, T. et al. Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release. Nat. Geosci. 11, 830–835 (2018).

    Article  CAS  Google Scholar 

  110. MacDougall, A. H. Estimated effect of the permafrost carbon feedback on the zero emissions commitment to climate change. Biogeosciences 18, 4937–4952 (2021).

    Article  CAS  Google Scholar 

  111. Schwinger, J., Asaadi, A., Steinert, N. J. & Lee, H. Emit now, mitigate later? Earth system reversibility under overshoots of different magnitudes and durations. Earth Syst. Dyn. 13, 1641–1665 (2022).

    Article  Google Scholar 

  112. Lawrence, D. M., Slater, A. G., Tomas, R. A., Holland, M. M. & Deser, C. Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophys. Res. Lett. 35, L11506 (2008).

    Article  Google Scholar 

  113. Jan, A. & Painter, S. L. Permafrost thermal conditions are sensitive to shifts in snow timing. Environ. Res. Lett. 15, 084026 (2020).

    Article  Google Scholar 

  114. Ballantyne, A. P. et al. The amplification of Arctic terrestrial surface temperatures by reduced sea-ice extent during the Pliocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 386, 59–67 (2013).

    Article  Google Scholar 

  115. Vaks, A. et al. Palaeoclimate evidence of vulnerable permafrost during times of low sea ice. Nature 577, 221–225 (2020).

    Article  CAS  Google Scholar 

  116. Wang, P. et al. Potential role of permafrost thaw on increasing Siberian river discharge. Environ. Res. Lett. 16, 034046 (2021).

    Article  Google Scholar 

  117. Park, H. et al. Increasing riverine heat influx triggers Arctic sea ice decline and oceanic and atmospheric warming. Sci. Adv. 6, eabc4699 (2020).

    Article  Google Scholar 

  118. Thackeray, C. W., Derksen, C., Fletcher, C. G. & Hall, A. Snow and climate: feedbacks, drivers, and indices of change. Curr. Clim. Change Rep. 5, 322–333 (2019).

    Article  Google Scholar 

  119. Rounce, D. R. et al. Global glacier change in the 21st century: every increase in temperature matters. Science 379, 78–83 (2023).

    Article  CAS  Google Scholar 

  120. Winkelmann, R. et al. in The Global Tipping Points Report (ed. Lenton, T. M. et al.) Ch. 1.2 (Univ. Exeter, 2023).

  121. Armour, K. C., Eisenman, I., Blanchard-Wrigglesworth, E., McCusker, K. E. & Bitz, C. M. The reversibility of sea ice loss in a state-of-the-art climate model. Geophys. Res. Lett. 38, L16705 (2011).

    Article  Google Scholar 

  122. Teufel, B. & Sushama, L. Abrupt changes across the Arctic permafrost region endanger northern development. Nat. Clim. Change 9, 858–862 (2019).

    Article  Google Scholar 

  123. O’Neill, H. B. et al. Permafrost thaw and northern development. Nat. Clim. Change 10, 722–723 (2020).

    Article  Google Scholar 

  124. Schädel, C. et al. Earth system models must include permafrost carbon processes. Nat. Clim. Change 14, 114–116 (2024).

    Article  Google Scholar 

  125. Hjort, J. et al. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat. Commun. 9, 5147 (2018).

    Article  CAS  Google Scholar 

  126. Langer, M. et al. Thawing permafrost poses environmental threat to thousands of sites with legacy industrial contamination. Nat. Commun. 14, 1721 (2023).

    Article  CAS  Google Scholar 

  127. Aas, K. S. et al. Thaw processes in ice-rich permafrost landscapes represented with laterally coupled tiles in a land surface model. Cryosphere 13, 591–609 (2019). This study demonstrates how laterally coupled tiles improve permafrost thaw representation in land-surface models.

    Article  Google Scholar 

  128. Smith, N. D. et al. Explicitly modelling microtopography in permafrost landscapes in a land surface model (JULES vn5.4_microtopography). Geosci. Model Dev. 15, 3603–3639 (2022).

    Article  Google Scholar 

  129. Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).

    Article  CAS  Google Scholar 

  130. Blyth, E. M. et al. Advances in land surface modelling. Curr. Clim. Change Rep. 7, 45–71 (2021).

    Article  Google Scholar 

  131. Brown, J., Ferrians, O., Heginbottom, J. A. & Melnikov, E. Circum-Arctic Map of Permafrost and Ground-Ice Conditions, Version 2 (National Snow and Ice Data Center, 2002); https://doi.org/10.7265/skbg-kf16

  132. Jones, B. M. et al. Lake and drained lake basin systems in lowland permafrost regions. Nat. Rev. Earth Environ. 3, 85–98 (2022).

    Article  Google Scholar 

  133. Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).

    Article  Google Scholar 

  134. Nitzbon, J., Aliyeva, M., Schneider von Deimling, T. & Langer, M. Computer code: Response of permafrost extent and carbon content to increasing global mean surface temperature. Zenodo https://doi.org/10.5281/zenodo.8366476 (2023).

Download references

Acknowledgements

J.N., T.S.v.D. and M.L. acknowledge funding through the German Federal Ministry of Education and Research project PermaRisk (grant no. 01LN1709A). J.N. acknowledges funding through the AWI INSPIRES programme. G.G. was supported by the European Union’s Horizon 2020 project Arctic Passion (grant no. 101003472) and the ESA CCI+ Permafrost initiative. S.M.S. acknowledges funding through the German Federal Ministry of Education and Research project MOMENT (grant no. 03F0931B). We gratefully acknowledge the creation of illustrations by Y. Nowak (AWI Communication and Media).

Author information

Authors and Affiliations

Authors

Contributions

J.N., T.S.v.D. and M.L. conceived the idea of the paper. J.N. led the preparation of the paper, created the figures and conducted geospatial analyses. G.G., N.J.S. and S.M.S. led the writing of individual subsections. M.A., S.E.C. and S.L. conducted geospatial analyses and mapping. G.L., M.W. and M.L. secured funding. All authors discussed the contents and contributed to the writing and editing of the paper.

Corresponding author

Correspondence to Jan Nitzbon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks David Armstrong McKay, Elchin Jafarov, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplemenatary Text 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nitzbon, J., Schneider von Deimling, T., Aliyeva, M. et al. No respite from permafrost-thaw impacts in the absence of a global tipping point. Nat. Clim. Chang. 14, 573–585 (2024). https://doi.org/10.1038/s41558-024-02011-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-024-02011-4

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology