Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A risk assessment framework for the future of forest microbiomes in a changing climate

Abstract

Microbes inhabiting the above- and belowground tissues of forest trees and soils play a critical role in the response of forest ecosystems to global climate change. However, generalizations about the vulnerability of the forest microbiome to climate change have been challenging due to responses that are often context dependent. Here we apply a risk assessment framework to evaluate microbial community vulnerability to climate change across forest ecosystems. We define factors that determine exposure risk and processes that amplify or buffer sensitivity to change, and describe feedback mechanisms that will modulate this exposure and sensitivity as climatic change progresses. This risk assessment approach unites microbial ecology and forest ecology to develop a more comprehensive understanding of forest vulnerability in the twenty-first century.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The forest microbiome in a changing climate.
Fig. 2: An organizational framework for studying forest microbiomes in a changing climate.
Fig. 3: Scales of forest microbiome exposure to climate change.
Fig. 4: Microbial sensitivity and underlying traits and trade-offs.

Similar content being viewed by others

References

  1. Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).

    Article  CAS  Google Scholar 

  2. Miner, K. et al. The co-production of knowledge for climate science. Nat. Clim. Change 13, 307–308 (2023).

    Article  Google Scholar 

  3. Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–603 (2021). This meta-analysis documents that mycorrhizal associations dictate ecosystem carbon storage under elevated CO2. Trade-offs above- and belowground are important for modelling carbon sequestration dynamics.

    Article  CAS  Google Scholar 

  4. Haraway, D. Anthropocene, Capitalocene, Plantationocene, Chthulucene: making kin. Environ. Humanit. 6, 159–165 (2015).

    Article  Google Scholar 

  5. Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).

    Article  CAS  Google Scholar 

  6. Anderegg, W. R. L. et al. A climate risk analysis of Earth’s forests in the 21st century. Science 377, 1099–1103 (2022).

    Article  CAS  Google Scholar 

  7. Dudney, J. et al. Nonlinear shifts in infectious rust disease due to climate change. Nat. Commun. 12, 5102 (2021).

    Article  CAS  Google Scholar 

  8. Allsup, C. M., George, I. & Lankau, R. A. Shifting microbial communities can enhance tree tolerance to changing climates. Science 380, 835–840 (2023). This large-scale field experiment demonstrates how inoculation of tree seedlings with cold- or drought-adapted soil microbial communities can promote seedling survival and drought stress tolerance. Mycorrhizal functional traits may help mediate plant stress.

    Article  CAS  Google Scholar 

  9. Pellitier, P. T., Ibáñez, I., Zak, D. R., Argiroff, W. A. & Acharya, K. Ectomycorrhizal access to organic nitrogen mediates CO2 fertilization response in a dominant temperate tree. Nat. Commun. 12, 5403 (2021).

    Article  CAS  Google Scholar 

  10. Pérez-Valera, E., Verdú, M., Navarro-Cano, J. A. & Goberna, M. Soil microbiome drives the recovery of ecosystem functions after fire. Soil Biol. Biochem. 149, 107948 (2020).

    Article  Google Scholar 

  11. Filialuna, O. & Cripps, C. Evidence that pyrophilous fungi aggregate soil after forest fire. For. Ecol. Manag. 498, 119579 (2021).

    Article  Google Scholar 

  12. Liu, X. et al. Responses of soil labile organic carbon to a simulated hurricane disturbance in a tropical wet forest. Forests 9, 420 (2018).

    Article  Google Scholar 

  13. Venturini, A. M. et al. Increased soil moisture intensifies the impacts of forest-to-pasture conversion on methane emissions and methane-cycling communities in the Eastern Amazon. Environ. Res. 212, 113139 (2022).

    Article  CAS  Google Scholar 

  14. García-Palacios, P. et al. Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming. Nat. Rev. Earth Environ. 2, 507–517 (2021).

    Article  Google Scholar 

  15. Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3, 417 (2012).

    Article  Google Scholar 

  16. Kearns, P. J. & Shade, A. Trait-based patterns of microbial dynamics in dormancy potential and heterotrophic strategy: case studies of resource-based and post-press succession. ISME J. 12, 2575–2581 (2018).

    Article  CAS  Google Scholar 

  17. Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).

    Article  CAS  Google Scholar 

  18. Baldrian, P., López-Mondéjar, R. & Kohout, P. Forest microbiome and global change. Nat. Rev. Microbiol. 21, 487–501 (2023).

  19. Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).

    Article  CAS  Google Scholar 

  20. Bui, A. et al. Soil fungal community composition and functional similarity shift across distinct climatic conditions. FEMS Microbiol. Ecol. 96, fiaa193 (2020).

  21. Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).

    Article  CAS  Google Scholar 

  22. Willing, C. E., Pierroz, G., Coleman‐Derr, D. & Dawson, T. E. The generalizability of water-deficit on bacterial community composition; site-specific water-availability predicts the bacterial community associated with coast redwood roots. Mol. Ecol. 29, 4721–4734 (2020).

    Article  CAS  Google Scholar 

  23. Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).

    Article  CAS  Google Scholar 

  24. Rudgers, J. A. et al. Climate disruption of plant–microbe interactions. Annu. Rev. Ecol. Evol. Syst. 51, 561–586 (2020).

  25. Lladó, S., López-Mondéjar, R. & Baldrian, P. Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol. Mol. Biol. Rev. 81, e00063-16 (2017).

    Article  Google Scholar 

  26. Wan, J. & Crowther, T. W. Uniting the scales of microbial biogeochemistry with trait-based modelling. Funct. Ecol. 36, 1457–1472 (2022). This perspective identifies conceptual and empirical challenges necessary to integrate microbial traits into models of forest responses to climate change. A focus on scaling laws, and microbial physiology as measured by new ’omics techniques, presents opportunities for new classes of predictive models.

    Article  CAS  Google Scholar 

  27. Mishra, A., Singh, L. & Singh, D. Unboxing the black box—one step forward to understand the soil microbiome: a systematic review. Microb. Ecol. 85, 669–683 (2023).

    Article  Google Scholar 

  28. Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).

    Article  CAS  Google Scholar 

  29. Kyoto Protocol to the United Nations Framework Convention on Climate Change 2303 UNTS 162 (United Nations, 1997).

  30. De Frenne, P. et al. Forest microclimates and climate change: importance, drivers and future research agenda. Glob. Change Biol. 27, 2279–2297 (2021).

    Article  Google Scholar 

  31. Poorter, L., Bongers, L. & Bongers, F. Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecology 87, 1289–1301 (2006).

    Article  Google Scholar 

  32. Piovesan, G. & Biondi, F. On tree longevity. New Phytol. 231, 1318–1337 (2021).

    Article  Google Scholar 

  33. Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543–545 (2014).

    Article  CAS  Google Scholar 

  34. Baldrian, P. Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol. Rev. 41, 109–130 (2017).

    CAS  Google Scholar 

  35. Epihov, D. Z. et al. Legume–microbiome interactions unlock mineral nutrients in regrowing tropical forests. Proc. Natl Acad. Sci. USA 118, e2022241118 (2021).

  36. Rodriguez, R. J., White, J. F. Jr, Arnold, A. E. & Redman, R. S. Fungal endophytes: diversity and functional roles. New Phytol. 182, 314–330 (2009).

    Article  CAS  Google Scholar 

  37. Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).

    Article  CAS  Google Scholar 

  38. Pérez-Izquierdo, L. et al. Plant intraspecific variation modulates nutrient cycling through its below ground rhizospheric microbiome. J. Ecol. 107, 1594–1605 (2019).

    Article  Google Scholar 

  39. Bennett, J. A. et al. Plant–soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355, 181–184 (2017).

    Article  CAS  Google Scholar 

  40. Peay, K. G. Timing of mutualist arrival has a greater effect on Pinus muricata seedling growth than interspecific competition. J. Ecol. 106, 514–523 (2018).

    Article  Google Scholar 

  41. Van Nuland, M. E., Ke, P.-J., Wan, J. & Peay, K. G. Mycorrhizal nutrient acquisition strategies shape tree competition and coexistence dynamics. J. Ecol. 111, 564–577 (2023).

    Article  Google Scholar 

  42. Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534 (2020).

    Article  CAS  Google Scholar 

  43. Fernandez, C. W., Heckman, K., Kolka, R. & Kennedy, P. G. Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Ecol. Lett. 22, 498–505 (2019).

    Article  Google Scholar 

  44. Arnold, A. E. & Engelbrecht, B. M. J. Fungal endophytes nearly double minimum leaf conductance in seedlings of a neotropical tree species. J. Trop. Ecol. 23, 369–372 (2007).

    Article  Google Scholar 

  45. Moyes, A. B. et al. Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer. New Phytol. 210, 657–668 (2016).

    Article  CAS  Google Scholar 

  46. Zheng, M. et al. Effects of human disturbance activities and environmental change factors on terrestrial nitrogen fixation. Glob. Change Biol. 26, 6203–6217 (2020).

    Article  Google Scholar 

  47. Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 6, e325 (2008). This paper develops a vulnerability assessment framework for species in a climate change context. It integrates biotic and abiotic factors that help to determine species’ vulnerability, broadly defined.

    Article  Google Scholar 

  48. Malik, A. A. et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 14, 1–9 (2020). This paper updates some of the trait-based frameworks originally developed for plants and applies them to microbes that influence soil carbon cycling. Clustering microbial traits can help promote accurate predictions of biogeochemical fluxes under climate change.

    Article  CAS  Google Scholar 

  49. Bender, E. A., Case, T. J. & Gilpin, M. E. Perturbation experiments in community ecology: theory and practice. Ecology 65, 1–13 (1984).

    Article  Google Scholar 

  50. Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl Acad. Sci. USA 105, 11512–11519 (2008).

    Article  CAS  Google Scholar 

  51. Whitman, T. et al. Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil Biol. Biochem. 138, 107571 (2019).

    Article  CAS  Google Scholar 

  52. Pulido-Chavez, M. F., Alvarado, E. C., DeLuca, T. H., Edmonds, R. L. & Glassman, S. I. High-severity wildfire reduces richness and alters composition of ectomycorrhizal fungi in low-severity adapted ponderosa pine forests. For. Ecol. Manag. 485, 118923 (2021).

    Article  Google Scholar 

  53. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    Article  CAS  Google Scholar 

  54. Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic, 2010).

  55. Schimel, J. P. Life in dry soils: effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).

    Article  Google Scholar 

  56. Martiny, J. B. H. et al. Investigating the eco‐evolutionary response of microbiomes to environmental change. Ecol. Lett. 26, S81–S90 (2023).

    Article  Google Scholar 

  57. Zhou, J. et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat. Commun. 7, 12083 (2016).

    Article  CAS  Google Scholar 

  58. Iversen, C. M., Ledford, J. & Norby, R. J. CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest. New Phytol. 179, 837–847 (2008).

    Article  CAS  Google Scholar 

  59. Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42, 181–203 (2011).

  60. Heinemeyer, A., Ineson, P., Ostle, N. & Fitter, A. H. Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytol. 171, 159–170 (2006).

    Article  CAS  Google Scholar 

  61. Olsrud, M., Carlsson, B. Å., Svensson, B. M., Michelsen, A. & Melillo, J. M. Responses of fungal root colonization, plant cover and leaf nutrients to long-term exposure to elevated atmospheric CO2 and warming in a subarctic birch forest understory. Glob. Change Biol. 16, 1820–1829 (2010).

    Article  Google Scholar 

  62. Ikeda, K. et al. Snowfall and snowpack in the Western U.S. as captured by convection permitting climate simulations: current climate and pseudo global warming future climate. Clim. Dyn. 57, 2191–2215 (2021).

    Article  Google Scholar 

  63. Millar, C. I. & Stephenson, N. L. Temperate forest health in an era of emerging megadisturbance. Science 349, 823–826 (2015).

    Article  CAS  Google Scholar 

  64. König, S. et al. Spatiotemporal disturbance characteristics determine functional stability and collapse risk of simulated microbial ecosystems. Sci. Rep. 8, 9488 (2018).

    Article  Google Scholar 

  65. Barnes, I. et al. New Ceratocystis species associated with rapid death of Metrosideros polymorpha in Hawai’i. Persoonia 40, 154–181 (2018).

    Article  CAS  Google Scholar 

  66. Reich, P. B. et al. Even modest climate change may lead to major transitions in boreal forests. Nature 608, 540–545 (2022).

    Article  CAS  Google Scholar 

  67. Livne-Luzon, S. et al. High resilience of the mycorrhizal community to prescribed seasonal burnings in eastern Mediterranean woodlands. Mycorrhiza 31, 203–216 (2021). This study investigates how the timing of fire can have differing impacts on fungal communities, probably related to periods of dormancy versus active growth.

    Article  Google Scholar 

  68. Wang, J. et al. Changing lengths of the four seasons by global warming. Geophys. Res. Lett. 48, e2020GL091753 (2021).

    Article  Google Scholar 

  69. Gallinat, A. S., Primack, R. B. & Wagner, D. L. Autumn, the neglected season in climate change research. Trends Ecol. Evol. 30, 169–176 (2015).

    Article  Google Scholar 

  70. Gange, A. C., Gange, E. G., Sparks, T. H. & Boddy, L. Rapid and recent changes in fungal fruiting patterns. Science 316, 71 (2007).

    Article  CAS  Google Scholar 

  71. Kauserud, H. et al. Warming-induced shift in European mushroom fruiting phenology. Proc. Natl Acad. Sci. USA 109, 14488–14493 (2012).

    Article  CAS  Google Scholar 

  72. Anderson, M. K. & Lake, F. K. California Indian ethnomycology and associated forest management. J. Ethnobiol. 33, 33–85 (2013).

    Article  Google Scholar 

  73. Karuk Climate Adaptation Plan (Karuk Tribe, 2019).

  74. Hernandez, J., Meisner, J., Jacobs, L. A. & Rabinowitz, P. M. Re-centering Indigenous Knowledge in climate change discourse. PLoS Clim. 1, e0000032 (2022).

    Article  Google Scholar 

  75. Gervers, K. A., Thomas, D. C., Roy, B. A., Spatafora, J. W. & Busby, P. E. Crown closure affects endophytic leaf mycobiome compositional dynamics over time in Pseudotsuga menziesii var. menziesii. Fungal Ecol. 57/58, 101155 (2022).

    Article  Google Scholar 

  76. Gora, E. M., Lucas, J. M. & Yanoviak, S. P. Microbial composition and wood decomposition rates vary with microclimate from the ground to the canopy in a tropical forest. Ecosystems 22, 1206–1219 (2019).

    Article  CAS  Google Scholar 

  77. Drake, J. E. et al. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Glob. Change Biol. 24, 2390–2402 (2018).

    Article  Google Scholar 

  78. Bowman, E. A. & Arnold, A. E. Distributions of ectomycorrhizal and foliar endophytic fungal communities associated with Pinus ponderosa along a spatially constrained elevation gradient. Am. J. Bot. 105, 687–699 (2018).

    Article  Google Scholar 

  79. Nelson, A. R. et al. Wildfire-dependent changes in soil microbiome diversity and function. Nat. Microbiol. 7, 1419–1430 (2022).

    Article  CAS  Google Scholar 

  80. Krah, F.-S. et al. Independent effects of host and environment on the diversity of wood-inhabiting fungi. J. Ecol. 106, 1428–1442 (2018).

    Article  Google Scholar 

  81. Van Nuland, M. E. et al. Warming and disturbance alter soil microbiome diversity and function in a northern forest ecotone. FEMS Microbiol. Ecol. 96, fiaa108 (2020).

    Article  Google Scholar 

  82. Giuggiola, A. et al. Competition for water in a xeric forest ecosystem—effects of understory removal on soil micro-climate, growth and physiology of dominant Scots pine trees. For. Ecol. Manag. 409, 241–249 (2018).

    Article  Google Scholar 

  83. Long, J. W., Lake, F. K. & Goode, R. W. The importance of Indigenous cultural burning in forested regions of the Pacific West, USA. For. Ecol. Manag. 500, 119597 (2021).

    Article  Google Scholar 

  84. Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196–1206 (2015).

    Article  Google Scholar 

  85. Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: biodiversity conservation in a changing climate. Science 332, 53–58 (2011).

    Article  CAS  Google Scholar 

  86. Talbot, J. M. et al. Endemism and functional convergence across the North American soil mycobiome. Proc. Natl Acad. Sci. USA 111, 6341–6346 (2014).

    Article  CAS  Google Scholar 

  87. Shu, W.-S. & Huang, L.-N. Microbial diversity in extreme environments. Nat. Rev. Microbiol. 20, 219–235 (2022).

    Article  CAS  Google Scholar 

  88. Moeller, H. V., Dickie, I. A., Peltzer, D. A. & Fukami, T. Mycorrhizal co-invasion and novel interactions depend on neighborhood context. Ecology 96, 2336–2347 (2015).

    Article  Google Scholar 

  89. U’Ren, J. M. et al. Host availability drives distributions of fungal endophytes in the imperilled boreal realm. Nat. Ecol. Evol. 3, 1430–1437 (2019). Foliar endophytes display high fidelity to their plant hosts across the boreal forest. This study suggests that climatic change may extirpate available hosts and reduce the diversity of endophytic fungi.

    Article  Google Scholar 

  90. Peay, K. G., Schubert, M. G., Nguyen, N. H. & Bruns, T. D. Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Mol. Ecol. 21, 4122–4136 (2012).

    Article  Google Scholar 

  91. Branco, S. et al. Genetic isolation between two recently diverged populations of a symbiotic fungus. Mol. Ecol. 24, 2747–2758 (2015).

    Article  CAS  Google Scholar 

  92. Evans, S. E., Allison, S. D. & Hawkes, C. V. Microbes, memory and moisture: predicting microbial moisture responses and their impact on carbon cycling. Funct. Ecol. 36, 1430–1441 (2022).

    Article  Google Scholar 

  93. Dove, N. C., Taş, N. & Hart, S. C. Ecological and genomic responses of soil microbiomes to high-severity wildfire: linking community assembly to functional potential. ISME J. 16, 1853–1863 (2022). Using a fire chronosequence, this study identified the successional dynamics of bacterial traits after wildfire. Metagenomic community profiling revealed the proliferation of genes involved in stress tolerance and that microbial communities do not recover ‘baseline’ function for decades.

    Article  CAS  Google Scholar 

  94. Hawkes, C. V. & Keitt, T. H. Resilience vs. historical contingency in microbial responses to environmental change. Ecol. Lett. 18, 612–625 (2015).

    Article  Google Scholar 

  95. Nottingham, A. T., Meir, P., Velasquez, E. & Turner, B. L. Soil carbon loss by experimental warming in a tropical forest. Nature 584, 234–237 (2020).

    Article  CAS  Google Scholar 

  96. Wang, C. et al. The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization. ISME J. 15, 2738–2747 (2021).

    Article  CAS  Google Scholar 

  97. Meisner, A., Jacquiod, S., Snoek, B. L., ten Hooven, F. C. & van der Putten, W. H. Drought legacy effects on the composition of soil fungal and prokaryote communities. Front. Microbiol. 9, 294 (2018).

    Article  Google Scholar 

  98. Bouskill, N. J. et al. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J. 7, 384–394 (2013).

    Article  CAS  Google Scholar 

  99. Fischer, M. S. et al. Pyrolyzed substrates induce aromatic compound metabolism in the post-fire fungus, Pyronema domesticum. Front. Microbiol. 12, 3085 (2021). Using a model ‘pyrophilous’ fungal species, the authors demonstrate that Pyronema is not only prevalent after fire, but actually adapted to be able to metabolize pyrolysed organic matter, a very recalcitrant form of carbon in post-fire systems.

    Article  Google Scholar 

  100. Smith, G. R., Edy, L. C. & Peay, K. G. Contrasting fungal responses to wildfire across different ecosystem types. Mol. Ecol. 30, 844–854 (2021).

    Article  Google Scholar 

  101. Bowd, E. J. et al. Direct and indirect effects of fire on microbial communities in a pyrodiverse dry-sclerophyll forest. J. Ecol. 110, 1687–1703 (2022).

    Article  CAS  Google Scholar 

  102. Enright, D. J., Frangioso, K. M., Isobe, K., Rizzo, D. M. & Glassman, S. I. Mega-fire in redwood tanoak forest reduces bacterial and fungal richness and selects for pyrophilous taxa that are phylogenetically conserved. Mol. Ecol. 31, 2475–2493 (2022).

  103. Bruns, T. D., Hale, M. L. & Nguyen, N. H. Rhizopogon olivaceotinctus increases its inoculum potential in heated soil independent of competitive release from other ectomycorrhizal fungi. Mycologia 111, 936–941 (2019).

    Article  CAS  Google Scholar 

  104. Kennedy, P. G., Higgins, L. M., Rogers, R. H. & Weber, M. G. Colonization–competition tradeoffs as a mechanism driving successional dynamics in ectomycorrhizal fungal communities. PLoS ONE 6, e25126 (2011).

    Article  CAS  Google Scholar 

  105. Bardgett, R. D. & Caruso, T. Soil microbial community responses to climate extremes: resistance, resilience and transitions to alternative states. Phil. Trans. R. Soc. B 375, 20190112 (2020).

    Article  CAS  Google Scholar 

  106. Miller, J. E. D., Root, H. T. & Safford, H. D. Altered fire regimes cause long-term lichen diversity losses. Glob. Change Biol. 24, 4909–4918 (2018).

    Article  Google Scholar 

  107. Metz, M. R., Varner, J. M., Frangioso, K. M., Meentemeyer, R. K. & Rizzo, D. M. Unexpected redwood mortality from synergies between wildfire and an emerging infectious disease. Ecology 94, 2152–2159 (2013).

    Article  Google Scholar 

  108. Robinson, J. M. et al. Rapid laboratory measurement of the temperature dependence of soil respiration and application to changes in three diverse soils through the year. Biogeochemistry 133, 101–112 (2017).

    Article  CAS  Google Scholar 

  109. Bradford, M. A. et al. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nat. Ecol. Evol. 3, 223–231 (2019).

    Article  Google Scholar 

  110. Malik, A. A. & Bouskill, N. J. Drought impacts on microbial trait distribution and feedback to soil carbon cycling. Funct. Ecol. 36, 1442–1456 (2022).

    Article  CAS  Google Scholar 

  111. Chomicki, G., Werner, G. D. A., West, S. A. & Kiers, E. T. Compartmentalization drives the evolution of symbiotic cooperation. Phil. Trans. R. Soc. B 375, 20190602 (2020).

    Article  CAS  Google Scholar 

  112. Willing, C. E. et al. Keep your friends close: host compartmentalisation of microbial communities facilitates decoupling from effects of habitat fragmentation. Ecol. Lett. 24, 2674–2686 (2021).

    Article  Google Scholar 

  113. Maynard, D. S. et al. Consistent trade-offs in fungal trait expression across broad spatial scales. Nat. Microbiol. 4, 846–853 (2019).

    Article  CAS  Google Scholar 

  114. Pounds, J. A. & Puschendorf, R. Clouded futures. Nature 427, 107–109 (2004).

    Article  CAS  Google Scholar 

  115. Khan, Z. et al. Growth enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consortia. Curr. Plant Biol. 6, 38–47 (2016).

    Article  Google Scholar 

  116. Nimmo, D. G., Mac Nally, R., Cunningham, S. C., Haslem, A. & Bennett, A. F. Vive la résistance: reviving resistance for 21st century conservation. Trends Ecol. Evol. 30, 516–523 (2015).

    Article  CAS  Google Scholar 

  117. Cregger, M. A. et al. The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome. Microbiome 6, 31 (2018).

    Article  CAS  Google Scholar 

  118. Rigling, D. & Prospero, S. Cryphonectria parasitica, the causal agent of chestnut blight: invasion history, population biology and disease control. Mol. Plant Pathol. 19, 7–20 (2017).

    Article  Google Scholar 

  119. Agan, A. et al. The relationship between fungal diversity and invasibility of a foliar niche—the case of ash dieback. J. Fungi 6, 150 (2020).

    Article  CAS  Google Scholar 

  120. Gehring, C. A., Sthultz, C. M., Flores-Rentería, L., Whipple, A. V. & Whitham, T. G. Tree genetics defines fungal partner communities that may confer drought tolerance. Proc. Natl Acad. Sci. USA 114, 11169–11174 (2017).

    Article  CAS  Google Scholar 

  121. Lustenhouwer, N. et al. A trait-based understanding of wood decomposition by fungi. Proc. Natl Acad. Sci. USA 117, 11551–11558 (2020).

    Article  CAS  Google Scholar 

  122. Alvarez-Manjarrez, J. & Garibay-Orijel, R. Resilience of soil fungal community to hurricane Patricia (category 4). For. Ecol. Manag. 498, 119550 (2021).

    Article  Google Scholar 

  123. Erlandson, S. R. et al. Transcriptional acclimation and spatial differentiation characterize drought response by the ectomycorrhizal fungus Suillus pungens. New Phytol. 243, 1910–1913 (2021). This study used transcriptomics to identify that fungal genes associated with stress tolerance are upregulated under experimental drought conditions and that genes associated with resource acquisition are downregulated.

    Google Scholar 

  124. Romero-Olivares, A. L., Meléndrez-Carballo, G., Lago-Lestón, A. & Treseder, K. K. Soil metatranscriptomes under long-term experimental warming and drying: fungi allocate resources to cell metabolic maintenance rather than decay. Front. Microbiol. 10, 1914 (2019).

    Article  Google Scholar 

  125. Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9, 119–130 (2011).

    Article  CAS  Google Scholar 

  126. Glassman, S. I., Levine, C. R., DiRocco, A. M., Battles, J. J. & Bruns, T. D. Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot. ISME J. 10, 1228–1239 (2016).

    Article  Google Scholar 

  127. Gei, M. et al. Legume abundance along successional and rainfall gradients in Neotropical forests. Nat. Ecol. Evol. 2, 1104–1111 (2018).

    Article  Google Scholar 

  128. Kou-Giesbrecht, S. & Menge, D. Nitrogen-fixing trees could exacerbate climate change under elevated nitrogen deposition. Nat. Commun. 10, 1493 (2019).

    Article  Google Scholar 

  129. Mason, R. E. et al. Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems. Science 376, eabh3767 (2022).

    Article  CAS  Google Scholar 

  130. Pellegrini, A. F. A. et al. Fire effects on the persistence of soil organic matter and long-term carbon storage. Nat. Geosci. 15, 5–13 (2022).

    Article  CAS  Google Scholar 

  131. Delgado-Baquerizo, M. et al. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Change 10, 550–554 (2020). This study identifies how warming can increase the abundance of fungal pathogens in soil. High-resolution mapping efforts on soil fungi can promote targeted interventions for agricultural systems.

    Article  Google Scholar 

  132. Pfender, W. F. & Vollmer, S. S. Freezing temperature effect on survival of Puccinia graminis subsp. graminicola in Festuca arundinacea and Lolium perenne. Plant Dis. 83, 1058–1062 (1999).

    Article  CAS  Google Scholar 

  133. Steidinger, B. S. et al. Ectomycorrhizal fungal diversity predicted to substantially decline due to climate changes in North American Pinaceae forests. J. Biogeogr. 47, 772–782 (2020).

    Article  Google Scholar 

  134. Yuan, Z. et al. Divergent above- and below-ground biodiversity pathways mediate disturbance impacts on temperate forest multifunctionality. Glob. Change Biol. 27, 2883–2894 (2021).

    Article  Google Scholar 

  135. Corrales, A., Mangan, S. A., Turner, B. L. & Dalling, J. W. An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecol. Lett. 19, 383–392 (2016).

    Article  Google Scholar 

  136. Dudenhöffer, J.-H., Luecke, N. C. & Crawford, K. M. Changes in precipitation patterns can destabilize plant species coexistence via changes in plant–soil feedback. Nat. Ecol. Evol. 6, 546–554 (2022).

    Article  Google Scholar 

  137. Konopka, A., Lindemann, S. & Fredrickson, J. Dynamics in microbial communities: unraveling mechanisms to identify principles. ISME J. 9, 1488–1495 (2015).

    Article  Google Scholar 

  138. Gao, C. et al. Co-occurrence networks reveal more complexity than community composition in resistance and resilience of microbial communities. Nat. Commun. 13, 3867 (2022).

    Article  CAS  Google Scholar 

  139. Qin, C., Pellitier, P. T., Van Nuland, M. E., Peay, K. G. & Zhu, K. Niche modelling predicts that soil fungi occupy a precarious climate in boreal forests. Glob. Ecol. Biogeogr. 32, 1127–1139 (2023).

    Article  Google Scholar 

  140. Walkup, J. et al. The predictive power of phylogeny on growth rates in soil bacterial communities. ISME Commun. 3, 73 (2023).

    Article  Google Scholar 

  141. Salipante, S. J. et al. Performance comparison of Illumina and Ion Torrent next-generation sequencing platforms for 16S rRNA-based bacterial community profiling. Appl. Environ. Microbiol. 80, 7583–7591 (2014).

    Article  Google Scholar 

  142. Bruns, T. D. & Taylor, J. W. Comment on ‘Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism’. Science 351, 826 (2016).

    Article  CAS  Google Scholar 

  143. Johnson, J. S. et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 10, 5029 (2019).

    Article  Google Scholar 

  144. Tedersoo, L. et al. Best practices in metabarcoding of fungi: from experimental design to results. Mol. Ecol. 31, 2769–2795 (2022).

    Article  Google Scholar 

  145. Philippot, L., Griffiths, B. S. & Langenheder, S. Microbial community resilience across ecosystems and multiple disturbances. Microbiol. Mol. Biol. Rev. 85, 00026-20 (2021).

  146. Nevison, C., Hess, P., Goodale, C., Zhu, Q. & Vira, J. Nitrification, denitrification, and competition for soil N: evaluation of two Earth system models against observations. Ecol. Appl. 32, e2528 (2022).

  147. Bradford, M. A. et al. Quantifying microbial control of soil organic matter dynamics at macrosystem scales. Biogeochemistry 156, 19–40 (2021).

    Article  Google Scholar 

  148. Baskaran, P. et al. Modelling the influence of ectomycorrhizal decomposition on plant nutrition and soil carbon sequestration in boreal forest ecosystems. New Phytol. 213, 1452–1465 (2017).

    Article  CAS  Google Scholar 

  149. Ovaskainen, O. & Abrego, N. Joint Species Distribution Modelling: with Applications in R (Ecology, Biodiversity and Conservation) (Cambridge Univ. Press, 2020).

  150. Abrego, N., Dunson, D., Halme, P., Salcedo, I. & Ovaskainen, O. Wood-inhabiting fungi with tight associations with other species have declined as a response to forest management. Oikos 126, 269–275 (2017).

Download references

Acknowledgements

We thank J. Dudney, R. Cruz de Hoyos, A. Guzman and R. Jackson for helpful feedback on this manuscript, and A. Venturini for help with translating our abstract into Portuguese for our readership. Additionally, we would like to thank D. Martinez for her input on potential synergies between Indigenous and Western science in the context of this article.

Author information

Authors and Affiliations

Authors

Contributions

C.E.W., P.T.P. and K.G.P. jointly conceived of the paper. C.E.W. and P.T.P. jointly wrote the paper with input from all co-authors. C.E.W. and P.T.P. share first authorship. C.E.W., L.M.V., S.D.B. and W.T. conceived of and wrote Box 1. V.O.L. designed Fig. 1 with input from C.E.W. and P.T.P. C.E.W. designed Fig. 2 with input from M.E.V.N. and P.T.P. Figure 3 was designed by M.E.V.N., C.E.W. and J.A.-M. P.T.P. wrote Box 2 with input from call co-authors. Figure 4 was designed by C.E.W. and P.T.P. All authors have read and approved the final version of the paper.

Corresponding authors

Correspondence to C. E. Willing or P. T. Pellitier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Eleonora Egidi, Kevin Newsham and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Spanish and Portuguese translations of the abstract.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willing, C.E., Pellitier, P.T., Van Nuland, M.E. et al. A risk assessment framework for the future of forest microbiomes in a changing climate. Nat. Clim. Chang. 14, 448–461 (2024). https://doi.org/10.1038/s41558-024-02000-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-024-02000-7

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology