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Flexible foraging behaviour increases 
predator vulnerability to climate change

Benoit Gauzens    1,2  , Benjamin Rosenbaum    1,2, Gregor Kalinkat    3, 
Thomas Boy1,2, Malte Jochum    4,5,6, Susanne Kortsch    7, Eoin J. O’Gorman    8 & 
Ulrich Brose    1,2

Higher temperatures are expected to reduce species coexistence by 
increasing energetic demands. However, flexible foraging behaviour could 
balance this effect by allowing predators to target specific prey species to 
maximize their energy intake, according to principles of optimal foraging 
theory. Here we test these assumptions using a large dataset comprising 
2,487 stomach contents from six fish species with different feeding 
strategies, sampled across environments with varying prey availability over 
12 years in Kiel Bay (Baltic Sea). Our results show that foraging shifts from 
trait- to density-dependent prey selectivity in warmer and more productive 
environments. This behavioural change leads to lower consumption 
efficiency at higher temperature as fish select more abundant but less 
energetically rewarding prey, thereby undermining species persistence and 
biodiversity. By integrating this behaviour into dynamic food web models, 
our study reveals that flexible foraging leads to lower species coexistence 
and biodiversity in communities under global warming.

Ecosystems are experiencing abrupt changes in climatic conditions, 
making it ever more important to predict and understand how they 
will respond in the future. Global warming will affect various levels of 
biological organization: from physiological processes occurring at 
the individual level1 to patterns at macroecological scales2. Warming 
impacts will cascade through these different organizational levels, 
changing species composition3 as well as community and food web 
structure4. By scaling up temperature effects from species physiology 
to food webs5, trophic interactions play a key role in an ecosystem’s 
response to global warming6. Therefore, food web models have become 
important tools for predicting the future of communities amidst ris-
ing temperatures, and understanding the underlying mechanisms7. 
However, current food web models are mostly based on networks com-
posed of static feeding interactions, thereby disregarding flexibility in 
consumer behaviour in response to varying environmental conditions.

Food web models building on biological processes observed at 
the level of individual organisms can be used to test mechanisms and 
generate predictions at the ecosystem level and therefore offer an 
integrative solution to study temperature effects on communities. 
For example, allometric trophic networks8 (ATNs) quantify effects 
of body mass and temperature on the biological rates of consum-
ers and resources to predict species biomass changes over time and 
across environmental conditions8–11. Thus, ATNs facilitate our under-
standing of how physiological responses to warming translate into 
species coexistence and biodiversity7. However, the ability of ATNs 
to derive sound predictions for large communities under changing 
environmental conditions has been challenged, stressing the need 
for more biological realism6,12. Indeed, a strong limitation of these 
models is that species are characterized solely by a set of biological 
rates that respond to temperature, such as metabolic or attack rates. 
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due to the lower abundance of large organisms23, therefore having 
negative consequences on species coexistence (hypothesis H1b).  
Alternatively, if neutral processes are found to be responsible for 
driving selectivity, predators would primarily forage on the most 
abundant species, which could result in a more even distribution of 
biomass across all prey size classes, enhancing the likelihood of species  
coexistence18,24 (hypothesis H2b). To test these hypotheses, we used a 
dataset of 2,487 stomach contents from six demersal fish species25,26 
collected in the Baltic Sea between 1968 and 1978. This dataset com-
piles body mass and information for the fish species, as well as body 
mass and biomass for the resource species observed in fish stomachs 
and in environment. We used this dataset to analyse the behavioural 
responses of fish to changes in temperature and resource availability 
(that is, the total biomass of their prey). Subsequently, we addressed 
the consequences of these empirical relationships by integrating  
them into a food web model to predict how species coexistence 
changes with warming and the related foraging choices of consumers.

Response to temperature and resource 
availability gradients
We used our database to document how consumer foraging behaviour 
responds to temperature and resource availability. The six fish species 
considered belong to two functional groups differing in body shape and 
foraging behaviour (flat, sit-and-wait predators versus fusiform, more 
active hunters). To describe the prey body mass distributions observed 
in fish stomachs (hereafter called the ‘realized distribution’) and in 
the environment (hereafter called the ‘environmental distribution’), 
we used empirical medians and standard deviations (Fig. 1). The envi-
ronmental distribution defines what is expected if neutral processes 
drive fish diets: it represents the expected body mass distribution of the 
consumer diets if consumption was driven by density-based encounter 
rates only. However, the size distributions of prey in the environment 
and in consumer diets are usually not identical because consumers 
actively select prey individuals with specific body masses. We used the 
ratio of the realized and environmental distributions to calculate fish 
selectivity with respect to these different prey body masses to obtain 
a ‘preference distribution’ (see conceptual explanation in Supplemen-
tary Fig. 1), which describes consumer selectivity on the basis of traits 
and consumer behavioural decisions (that is, foraging behaviour). 
While traits define the fundamental trophic niche of a species (what 
a consumer can eat), behavioural decisions define the realized part 
of the fundamental niche. Therefore, a shift in behaviour does not 
necessarily imply a shift in the identity of prey species, but can simply 
lead to a shift in the individual traits that are selected, within or across 
different prey species. A more detailed description of the body mass 

Therefore, species are limited to physiological responses to warming, 
whereas the behavioural component is largely ignored. However, it is 
well established that species also respond to warming by changing 
their behaviour13,14. From a food web perspective, flexibility in species’ 
foraging behaviour is usually modelled using the principles of optimal 
foraging behaviour, which posit that consumers will modify their diet 
to maximize their energy intake. Under this hypothesis, models pre-
dict that behavioural changes help to support species coexistence in 
communities. However, it remains uncertain whether the premise of 
optimal foraging holds true in the context of rising temperatures and 
how behavioural changes prompted by warming translate into altered 
species coexistence. Therefore, integrating behavioural flexibility into 
food web models is critical to improve their accuracy in predicting the 
consequences of global warming15–19.

Energetic demands increase with temperature, but species can 
offset them by adopting various strategies to increase their energy 
intake. Species can actively forage on energetically more rewarding 
resources13,20, typically prey that are close to the maximum body mass 
that consumers can feed on21. Therefore, we expect that predators 
favour larger prey individuals (trait-based selectivity) at higher tem-
peratures, reducing predator–prey body mass ratios (hypothesis H1a). 
Alternatively, individuals under high energetic stress may be driven by 
their increased demand for food and accept less rewarding (smaller), 
but more abundant prey upon random encounter (hypothesis H2a) 
leading to a reduced trait-based selectivity, and a trophic niche driven 
more by neutral processes (random encounter probability). These 
two hypotheses would lead to contrasting effects on communities22. 
Trait-based selectivity may increase the interaction strengths between 
predators and larger prey, which could increase their extinction risk 
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Fig. 1 | Conceptual representation of temperature impacts on the preference 
distribution. a, The preference distribution of prey body masses (turquoise) 
is estimated from the environmental (distribution of prey body masses in 
the environment, purple) and realized (distribution of prey body masses in 
consumers’ stomachs, yellow) body mass distributions. It represents how 
different prey body masses are selected by the consumers. b, Based on our two 
hypotheses, temperature increase can lead to one of the following hypotheses. H1 
(left): consumers preferentially select for larger species (trait-based selectivity), 
which can create an imbalance in the trophic fluxes (blue arrows); some species 
are preferentially selected even when their abundance is low, increasing their 
extinction risks and initiating large dynamical oscillations in species densities. 
H2 (right): temperature increase leads consumers to have their diet more driven 
by encounter rates (density-based selectivity), which creates a stronger control 
of species with high biomass in comparison with less abundant, smaller ones, 
favouring coexistence of resource species and thus community species richness.

Table 1 | Response of the median prey body mass to predator 
body mass and environmental gradients

Response of the median prey body mass of the preference distribution to:

Predictors Estimates Confidence 
interval (95%)

Effective 
samples

Intercept −1.06 −3.14 to 1.09 1,646

Predator body mass 0.55 0.41 to 0.70 2,090

Temperature 0.18 −0.04 to 0.38 2,000

Resource availability 0.19 −0.59 to 0.90 2,017

Temperature: resource 
availability

−0.07 −0.14 to 0.01 1,961

Observations 290

R2 Bayes 0.279

Presentation of mean estimates and uncertainties (95% confidence interval), as well as 
effective sample size for the different predictors of the model. Rhat values were all lower than 
1.003 for all estimated parameters. Total number of samples was 4,000.
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relationships observed in consumer stomachs can be found in Sup-
plementary Information II.

We tested how the median of the fish’s preference distributions 
was affected by the local resource availability and temperature condi-
tions using a Bayesian linear model (note that we did not detect any 
strong correlation between resource availability and temperature; 
Spearman correlation −0.167). The model included main effects for 
resource availability, temperature, fish functional group and fish body 
mass, and the interactions between resource availability and tempera-
ture and between fish functional group and temperature. Including fish 
body mass as a covariate in the model ensures that our results are inde-
pendent of predator size. We compared the full model with versions 
without the interaction between fish functional group and temperature 
and without fish functional group as a covariate using a ‘leave-one-out’ 
cross-validation approach27. The most parsimonious model used for the 
subsequent analyses was the one that did not include fish functional 
group or its interaction with temperature (results presented in Sup-
plementary Information III), indicating that the behavioural responses 
to temperature and resource availability were similar for fish species 
with different body shapes and foraging strategies. By contrast, we 
observed an important interaction between resource availability and 
temperature on the median of the preference distribution (Table 1 and 
Fig. 2) suggesting that behavioural responses of fish to temperature 
depend on environmental resource availability levels.

By examining the effect size and significance of the temperature 
effect along the resource availability gradient in our dataset, we found 
that the temperature effect is significant only at high levels of resource 
availability (Fig. 3). Here fish tend to forage on smaller prey as tem-
perature increases. This indicates that fish only change their feeding 
behaviour to temperature by foraging on smaller prey in warmer con-
ditions (so supporting H2a against H1a) when resources are plentiful.

The energetic stress that warming imposes on individuals through 
increased metabolic rates should be mitigated by higher feeding rates 
at higher prey availability in more productive environments. Thus, 
because the effects of temperature and resource availability should can-
cel each other out, we expected a stronger behavioural response at low 
resource levels, where consumers must cope with maximum energetic 

stress (regardless of temperature). Under such stressful conditions, 
there may be no scope for predators to change their feeding behaviour 
as temperature increases, especially in the Baltic Sea where growth rates 
of fish species tend to be limited by resource availability in general28,29.

In more productive environments (see Supplementary Informa-
tion IV for a description of resource availability and of prey body mass 
structure), feeding behaviour may be less constrained, increasing the 
behavioural flexibility of the fish. We also observed that the width of 
the fish preference distribution decreases with temperature in the most 
productive environments (Table 2 and Extended Data Fig. 1), which 
means that this reduction in selected prey body masses is not explained 
by neutral processes but instead comes from fish actively foraging for 
smaller prey when temperature increases. This result challenges our 
hypothesis H2a, which suggested that foraging on smaller prey would 
be associated with a decrease in selectivity, but could be explained by 
the commonly observed type III functional response23,30. Here, when 
temperature increases consumers gradually shift their focus on more 
abundant resources (corresponding to smaller species), which comes 
at the cost of ignoring the less abundant, bigger ones, leading to a 
reduction in the width of the consumer trophic niche. With this behav-
iour, fish can satisfy their immediate demand for energy by targeting 
abundant species, but at the cost of missing out on larger and thus 
energetically more rewarding prey individuals, which can be critical to 
satisfy their energetic demands in the long term31. Indeed, fish meta-
bolic rates increase with warming over large temperature gradients32 
and do so faster than their feeding rates33, which can lead to the extinc-
tion of top predators due to starvation34. Combining this physiological 
starvation effect with our observed behavioural response indicates 
that consumption outside of the most efficient predator–prey body 
mass ratio should reduce energy flux through food webs, limiting the 
coexistence of consumer species31,35. The combination of physiological 
and behavioural warming effects could thus increase the likelihood 
of top predator extinction in food webs, which are usually considered 
key species for maintaining biodiversity and ecosystem functioning36.

Consequences for species coexistence under 
global warming
Flexible foraging in response to varying local conditions is consid-
ered key to promote species coexistence18,19,37. The general assumption 
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Fig. 2 | Response of the median prey body mass of the preference distribution. 
a,b, Effect of predator body mass (a) and temperature and resource availability 
(b). Points represent log-transformed data across all resource availability 
levels, and lines represent model predictions. Regression lines represent model 
predictions on the median of the preferred distribution when all other covariates 
are considered. The shaded areas show the 95% confidence interval on the 
predicted values. Low and high resource availability values correspond to the two 
modes of the bimodal distribution of resource availability values (presented in 
Supplementary Information IV).
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Fig. 3 | Effect of resource availability on the effect size of temperature on 
the median body mass of the preference distribution. The solid black line 
represents the effect size of the temperature effect calculated from the original 
model coefficients, and the grey area shows the associated uncertainty (95% 
confidence interval). The vertical dashed line represents the resource availability 
threshold above which the temperature effect becomes significant (effect of 0 
outside of the 95% confidence interval).

http://www.nature.com/natureclimatechange


Nature Climate Change | Volume 14 | April 2024 | 387–392 390

Article https://doi.org/10.1038/s41558-024-01946-y

behind this notion is that consumer species will adapt their foraging 
strategies to maximize their energetic gains38. However, our results 
suggest that consumers tend to depart from this optimal foraging 
behaviour under stressful conditions. We explored the consequences 
of this behaviour using a dynamic population model that predicts the 
temporal dynamics and coexistence of species in food webs (Methods). 
We ran two versions of this model: one including changes of species 
diets based on local temperature and resource availability conditions 
as informed by our empirical results, and one model with static feed-
ing links representing the classical food-web modelling approach. 
We simulated the dynamics for synthetic food webs of 50 species (30 
consumers and 20 basal species) over a temperature gradient spanning 
from 0 °C to 18 °C to predict the number of species extinctions at dif-
ferent temperatures. Overall, we observed that models incorporating 
flexible foraging were more sensitive to warming, with more consumer 
extinctions over the temperature gradient (Fig. 4) and relatively few 
extinctions of basal resources (results shown in Supplementary Fig. 6). 
These results were not affected by the functional response type, which 
is a free parameter in our modelling approach, but tended to weaken at 
very low levels of nutrient availability (that is, productivity), consistent 
with our empirical results (model predictions for the different values 
are available in Supplementary Information VI).

Generally, food web models incorporating foraging behaviour are 
based on optimal foraging theory and thus lack a data-driven descrip-
tion of how the selectivity of consumer diets changes in a natural con-
text. To address this gap, we developed a trait-based framework to 
document the response of foraging behaviour to temperature, which 
can be incorporated into predictive models of food web structure 
and species coexistence. Our approach can be generalized to other 
ecological variables that affect food webs and foraging behaviour, 
such as fear of predators or habitat complexity39. Finally, the effects 
documented here come from data sampled at rather low levels of tem-
perature and resource availability. Therefore, it will be crucial to extend 
our regression models to warmer and more productive ecosystems to 
assess whether very high levels of productivity could balance the ener-
getic stress related to warming, thus limiting behavioural responses in 
eutrophic environments.

A potential limitation of our approach is that the variations in 
temperature we employed were primarily driven by seasonal changes, 
which may not fully reflect the long-term dynamics associated with 
climate change as well as indirect effects through modification of 
habitat structure potentially interacting with the foraging behaviour 
of consumers or lowering oxygen concentrations. Similarly, response 
of social behaviour, such as aggregation of predator or prey, could 

influence the shape of the functional response but is rarely considered 
in the literature. Nevertheless, our hypotheses and interpretations are 
rooted in energetic budget calculations that stem from fundamental 
mechanistic principles concerning the impact of temperature and prey 
body masses on population growth rates. This mechanistic framework 
enabled us to formulate generalizable predictions regarding tempera-
ture effects across different ecological contexts. Consequently, we pro-
pose a testable explanation for the observed decline in biomass among 
the fish populations in the Baltic Sea40. However, it remains possible 
that fish could exhibit increased fitness by consuming smaller, more 
abundant organisms under certain conditions. Hence, these predic-
tions should now be confronted with a comprehensive examination 
of how the fitness of fish changes depending on temperature and 
behavioural choices, for example, in more controlled experimental 
settings (for example, mesocosms). Such experimental approaches 
could also consider other mechanisms leading to shifts in species diets 
and interactions in the context of temperature increase, for example, 
ontogenetic shits41.

The effects of warming on the trait structure of communities 
and the distribution of trophic interactions42 are well documented, 
but a framework for integrating changes in feeding behaviour with a 
general modelling approach has been lacking. Closing this gap, our 
results stress the importance of accounting for foraging behaviour 
to better understand and predict community responses to climate 
change, and challenge previous conclusions on this topic. Indeed, the 
discrepancies between the models with and without flexible foraging 
suggest that the classical approach, which only accounts for changes 
in species physiology6,7, completely ignoring behavioural aspects, 
may have overlooked an important portion of community responses 
to warming. Importantly, our results show that, contrary to common 
expectation, behavioural responses to climatic stress can reduce the 
likelihood of species coexistence and thus decrease community biodi-
versity. The similarity in the responses of the two fish feeding strategies 
(sit-and-wait and active foraging) indicates some generality in our 
results, but it is important to investigate these patterns for a wider 
range of species and ecosystem types in future studies. For instance, 
consumer metabolic type has an important effect on the response of 

Table 2 | Response of the standard deviation of the body 
mass preference distribution to predator body mass and 
environmental gradients

Response of standard deviation of the preference body mass distribution to:

Predictors Estimates Confidence 
interval (95%)

Effective 
samples

Intercept −1.05 −1.92 to −0.17 1,046

Predator body mass 0.19 0.12 to 0.25 2,059

Temperature 0.13 0.04 to 0.21 1,053

Resource availability 0.39 0.09 to 0.69 1,053

Temperature: resource 
availability

−0.05 −0.08 to −0.02 1,050

Observations 290

R2 Bayes 0.157

Presentation of mean estimates and uncertainties (95% confidence interval), as well as 
effective sample size for the different predictors of the model. Rhat values were all lower than 
1.002. Total number of samples was 4,000.
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Fig. 4 | Number of consumer species extinctions predicted by the model at 
different temperatures (out of an initial richness of 30 consumers). Points 
represent the number of observed extinctions for each simulation. The blue line 
represents the model prediction on the average number of extinctions without 
the response of species’ foraging behaviour to local temperature and resource 
availability conditions considered, while the red line shows average predictions 
of extinctions when allowing for this flexibility. The shaded areas show the 95% 
confidence interval on the predicted values. Predictions were estimated using a 
GAM with a binomial link function.

http://www.nature.com/natureclimatechange


Nature Climate Change | Volume 14 | April 2024 | 387–392 391

Article https://doi.org/10.1038/s41558-024-01946-y

species to temperature43 and endotherms could respond differently 
than ectotherms such as fish.

Conclusion
It is generally assumed that consumers respond to environmental 
conditions by making choices that maximize their energy intake19,44. 
This assumption has been used to derive several predictions in ecol-
ogy about community structure and species coexistence, and is often 
considered a solution to May’s paradox45 that highly diverse commu-
nities are mostly mathematically infeasible, despite their widespread 
occurrence in nature. It is therefore commonly assumed that behaviour 
not included in these simple mathematical models is a strong driver of 
community organization and supports species coexistence19. We chal-
lenge this optimistic view of nature by demonstrating how consumer 
species can shift to less efficient foraging behaviour under stressful 
conditions, for instance when resources are scarce and when they face 
additional energetic stress due to warming. Therefore, the ecological 
conclusions built into the assumptions that flexible behaviour favours 
coexistence do not necessarily hold in the context of global warm-
ing. Our mechanistic modelling approach demonstrates the conse-
quences of this observation, with more species extinctions in response 
to warming when flexible foraging is considered. This indicates that 
global warming may lead to a greater reduction in species coexistence 
than predicted by classical ecological models. Our findings thus chal-
lenge the general paradigm that flexible foraging should mitigate the 
consequences of global warming for natural ecosystems and call for a 
general data-driven theory approach to forecasting biodiversity and 
functioning in future ecosystems.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
The Kiel Bay database
To estimate how species body mass preferences change depending 
on local environmental conditions we used the Kiel Bay database26. 
This publicly available database25 compiles the stomach contents of 
seven fish species (adult and subadult individuals) classified into two 
functional groups, based on their body shape and habitat use: fusiform 
and benthopelagic species (Gadus morhua and Merlangius merlangus) 
versus flat and demersal species (Limanda, Pleuronectes platessa, 
Platichthys flesus and Hippoglossoides platessoides). This shape char-
acteristic also corresponds to specific foraging behaviour46, where flat 
fish tend to be ‘sit-and-wait’ predators, while fusiform fish are more 
actively foraging feeders. Together with taxonomic information, the 
database contains the body length of the fish species (rounded to the 
nearest integer in cm) as well as the abundance and biomass of the dif-
ferent prey species in fish stomachs and in their environments. Species 
in the environment were sampled with van Veen grabs directly along 
the trawling routes used for fish sampling. In total, six sampling sites 
(three for each trawling route) were used for the bottom grab sampling, 
each site being sampled several times during the period covered by our 
dataset. To reduce biases associated with site specificity of benthos 
communities (that is, sampled with the van Veen grabs), data from 
sampling sites were pooled together if they were harvested on the same 
date and corresponded to the same trawling route.

The dataset also contains sea temperature data (representing 
monthly average taken at 20 m depth). For our analysis, we used a 
subset of the database for which it was possible to associate the content 
of fish stomachs to the environmental abundances of their prey (see 
‘Filtering data and association between fish and environments’ section 
for more details).

Estimation of fish body masses
To allow for correspondences between our allometric food web model 
(that relies on species body masses for its parametrization), the ener-
getic approach discussed, and the empirical part of our study, we 
converted the body lengths of fish to body masses. We used a power 
law47: BMi = aBL

b
i ,  where BMi and BLi represent the body mass and  

body length of fish i, respectively. a and b are constants that are species 
and location specific. Values for our parameters a and b obtained from 
fishBase48 are as follows:

Gadus morhua: a = 0.00708, b = 3.08; Merlangius merlangus: 
a = 0.00631, b = 3.05; Limanda: a = 0.00776, b = 3.08; Pleuronectes 
platessa: a = 0.00776, b = 3.06; Platichthys flesus: a = 0.00776, b = 3.07; 
Hippoglossoides platessoides: a = 0.00562, b = 3.09; Enchelyopus cim-
brius: a = 0.00389, b = 3.08.

Filtering data and association between fish and environments
To make comparisons between the distributions of prey observed 
in fish stomachs and the ones observed in the environment, we only 
used a subset of the Kiel Bay database for which we were able to 
associate information about a fish’s stomach contents to informa-
tion about the related prey in the environment. We considered this 
association between fish and environment possible when they were 
sampled in the same area (that is, bottom grabs carried out directly 
on the route of a bottom trawl) and within less than 31 days (see Sup-
plementary Information VII for a distribution of the differences). 
Then, associations were made between fish and environments from 
the same location that minimized the time difference between the 
fish and environmental sampling. This first filter reduced the number 
of fish used in our analysis to 2,487. From this subset, we pooled all 
individuals from the same fish species occurring at the same place 
on the same date (that is, when they were harvested during the same 
sampling event) with the same body mass (in our case, body mass is 
a discrete variable as it was estimated from body length, rounded to 
the nearest integer in cm) into a unique entity for statistical analysis, 

which we hereafter call ‘statistical fish’. This choice is led by the allo-
metric approach used in our analysis, where all individuals from the 
same species and with the same body mass are considered identical. 
This aggregation increases the quality of the estimation of the prey 
body mass distribution in stomachs at the cost of a lower statistical 
power for the analyses done on the shape of these distributions. 
For instance, with a high aggregation level, fewer data points are 
available to consider the effect of temperature on the average body 
mass of prey. This approach is therefore conservative as it reduces 
the probability of type 1 error. Lastly, to make sure that the sampling 
of the prey in the environment was representative of the statistical 
fish’s diet, we checked if the species composition in the environ-
ment matched that of the fish stomachs26. This led to the removal of  
26 statistical fish where less than 90% of the biomass found in the 
diet corresponded to species also found in the environment. This 
resulted in a final dataset of 290 statistical fish, underpinned by 
2,487 individuals. For our statistical analysis, we used fish body func-
tional group as a covariate instead of fish species, as models based 
on fish functional group were always found to be more parsimonious  
(based on Akaike information criterion).

Fitting of gut content and environmental distributions
We used empirical medians and standard deviations to describe all 
environmental distributions of log10 body masses and realized dis-
tributions of each predator identity. Taxon-specific characteristics 
of the prey, such as body toughness, could bias the dietary distribu-
tions towards prey containing shells or skeletons. We assumed that 
prey with hard body parts are more likely to be detected in stomach 
contents than species composed of soft tissues (due to their higher 
digestion time) and weighted their occurrence by a correction factor 
of 0.8 (according to ref. 49). Overall, the trends and effects observed 
when including this correction were similar to those observed with-
out correction, thus suggesting an absence of systematic biases 
(see Supplementary Information VIII for an analysis without  
correction factor).

Determining allometric species’ preferences
We assumed that a feeding event is defined by two independent prob-
abilities: the probability for a consumer to encounter a prey of a certain 
body size x (defined by the environmental distribution E(x)) and the 
probability for a consumer to consume the prey when encountered 
(given by the preference distribution P(x)). Then, the realized distribu-
tion is proportional to their product:

R (x) ∼ E (x) × P (x) .

The preference distribution can therefore be expressed by the 
departure of the realized niche from the environmental distribution, 
or by filtering out the effect of species environmental availability from 
the realized distribution:

P (x) = R (x)
E (x) .

As such, the preference distribution is independent of seasonal 
changes in prey communities or any other factors that could lead to 
an altered size distribution of prey in the environment.

Theoretically, it is possible to compute continuous distributions 
R and E from observed body masses for the realized distribution, ri 
(i = 1…n), and for the environmental distribution ei (i = 1…m), respec-
tively, with, for example, kernel density estimation, and compute

P (x) = R (x)
E (x) /∫

R (x)
E (x) dx.

We chose, however, a more conservative approach that requires 
just a kernel density estimate for the environmental distribution E(x): 
moments (that is, mean, standard deviation and skewness) of P(x) can 
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be computed as weighted moments of the observed realized body 
masses ri with weights (that is, the contribution of the data point to the 
estimation of the moments) wi = 1/E(ri) being the inverse of environ-
mental abundances. Thus, realized body masses that are highly abun-
dant in the environment contribute less to the preference distribution, 
while those that are rare contribute more. Following ref. 50 and assum-
ing W = ∑iwi, the mean μ, variance σ² and skewness γ of the preference 
distribution P(x) are as follows:

μ = 1
W ∑

i
wiri

σ2 = 1
W ∑

i
wi(r, |, i − μ)

2

γ = 1
Wσ3 ∑i

wi(r, |, i − μ)
3

To assess changes in the distributions and how they depart from 
each other, we used variations in the point estimates (median and 
standard deviation).

Statistical analyses
To fit the preference distributions, we used a Bayesian linear model to 
explicitly test our hypotheses. We started by predicting the median 
and standard deviation of the preference distributions using tempera-
ture, resource availability, fish functional group and fish body mass as 
covariates, as well as interactions between temperature and functional 
group and temperature and resource availability. Body masses used 
for the different distributions, as well as resource availability, were 
log-transformed for visualization purposes and to meet homosce-
dasticity assumptions from linear models. The inclusion of fish body 
mass as a fixed effect in our model ensures that the other covariates 
are corrected by fish body mass and therefore independent of it. We 
first checked if fish functional group was an important predictor in our 
model using a ‘leave-one-out’ cross-validation27, and finally simplified 
our model by removing fish functional group from the covariates (see 
Supplementary Information III for more comparison of the differ-
ent models and for the presentation of posterior distributions). The 
log-transformation of the body mass and biomass variables was done 
to fulfil the assumptions of linear models.

Dynamic model
To simulate the population dynamics, we used a previously published 
model51, based on the Yodzis and Innes framework52. The growth of 
consumer species Bi is determined by the balance between its energetic 
income (predation) and its energetic losses (predation metabolism)

dBi
dt

= ePBi∑
j
Fij + eABi∑

j
Fij −∑

j
BlFji − xiBi,

where eP = 0.545 and eA = 0.906 represent the assimilation efficiency of a 
consumer foraging on plants and animals, respectively53. xi defines the 
metabolic rate of species i, which scales allometrically with body mass:

xi = x0mi
−0.25eEx

T0−T
kT0T ,

where x0 = 0.314 is the normalization constant51, Ex = −0.69 is the activa-
tion energy of metabolic rate7, k is the Boltzmann constant, T0 = 293.15 
is the reference temperature in Kelvin and T is the temperature at which 
the simulation is performed. The trophic interactions are determined 
using a functional response Fij that describes the feeding rate of con-
sumer i over resource j:

Fij =
ωijbijB1+qj

1 + cBi + ωij∑k hibikB
1+q
k

× 1
mi

.

bij represents the species-specific capture and is determined by preda-
tor and prey body masses:

bij = PijLij.

It corresponds to the product of encounter probabilities Pij by the 
probability that an encounter leads to a realized predation event Lij. 
As such, the parameters encode neutral processes (encounter prob-
abilities) and trait-based selectivity, as the distribution Lij represents 
the fundamental trophic niche of consumer i, that is, the set of prey 
it can consume based on its traits. Both quantities are determined by 
species body masses. We assume that encounter probability is more 
likely for species with higher movement speeds of both consumer and 
resource species:

Pij = p0mβi
i m

βj
j e

Ep
T0−T
kT0T .

Since movement speed scales allometrically with consumer and 
resource masses54, we drew βi and βj from normal distributions (con-
sumer: μβ = 0.47, σβ = 0.04, resource: μβ = 0.15, σβ = 0.03), following ref. 
51. Activation energy Ep is equal to −0.38, from ref. 7. Lij is assumed to 
follow a Ricker curve51, defined as

Lij = ( mi
mjRopt

e
1− mi

mjRopt )
γ

,

where the optimal consumer–resource body mass ratio Ropt = 71.68 was 
calculated from the observed realized interactions in our dataset. We 
used a threshold Lij < 0.01 under which values were set to 0, assuming 
that consumers do not consider prey which are too small or too large. 
This fundamental niche described by Lij was used to generate our food 
webs, as we considered that species i consumes species j when Lij > 0.01. 
The handling time hij of i on j is defined as

hij = h0mηi
i m

ηj
j e

Eh
T0−T
kT0T ,

where the scaling constant h0 was set to 0.4 and the allometric coeffi-
cients for ηi and ηj were drawn from a normal distribution with mean 
and standard deviation of −0.48 and 0.03 for ηi and of −0.66 and 0.02 
for ηj. Eh is equal to 0.26. ci represents the species-specific interference 
competition defined as

ci = c0e
Ec

T0−T
kT0T ,

where the scaling constant c0 was drawn from a normal distribution of 
mean 0.8 and standard deviation 0.2. The activation energy Ec is equal 
to −0.65. The hill exponent q is a free parameter coding for the type of 
functional response and is set to 1.2 by default. The term wij informs on 
species selectivity55, describing the foraging effort of a given consumer 
on part of its fundamental niche (based on traits only, as described by 
the Lij). For the models without behavioural expectations, we defined wij 
for every resource j as 1 over the number of prey species of consumer i.  
This parametrization, which corresponds to what is usually done in 
modelling studies, means that a consumer will split its foraging effort 
equally among its prey, independent of the local environmental con-
ditions. When flexible behaviour was included in the model, the val-
ues of wij were determined by the empirical preference distributions 
associated with fish. Our empirical distributions were characterized 
by the three first moments (mean, standard deviation and skewness), 
which can be used to estimate the parameters of a skewed normal dis-
tribution, named location (ξ), scale (ꞷ) and shape (α), respectively. As  
for the mean and standard deviations, we used linear models to relate 
these parameters to consumer body mass, as well as the interaction 
between resource availability and temperature. The scale parameter 
(ꞷ) is constrained to positive values, so we used a generalized linear 
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model with a log link function for this specific parameter. For each 
consumer, based on its body mass, as well as local temperature and 
resource availability conditions, we predicted the complete parametri-
zation of a skewed normal distribution. The preference of consumer i 
on resource j was estimated with the values returned by the probability 
density functions associated to each parametrization for the different 
resource body masses.

To maintain the comparability with the model without flexible 
behaviour, the wij values were transformed so that their sum was equal 
to 1 for each consumer. The biomass dynamic of the basal species i is 
defined as

dBi
dt

= riGiBi −∑
j
BjFji − xiBi,

where ri = m−0.25
i  defines the species growth rate (Er  is the associated 

activation energy, set to 0.25). Gi is the species-specific growth factor, 
determined by the concentration of two nutrients N1 and N2:

Gi = min ( N1
Ki1 + N1

, N2
Ki2 + N1

) ,

where Kil determines the half saturation density of plant i nutrient 
uptake rate, determined randomly from a uniform distribution in  
[0.1, 0.2]. The dynamic of the nutrient concentrations is defined by

dNl
dt

= D (Sl − Nl) − vl∑
i
riGiPi,

where D = 0.25 determines the nutrient turnover rate and Sl = 5 deter-
mines the maximal nutrient level. The loss of a specific nutrient Nl is 
limited by its relative content in plant species biomass (v1 = 1, v2 = 0.5). 
We ran our model on food webs of 50 species, composed of 30 consum-
ers and 20 basal species. A link was drawn between two species i and j 
when Lij > 0. For each temperature we ran 50 replicates of the two ver-
sions of the model (with and without flexible behaviour) using R 4.0.0–2 
and with an updated version of the ATNr package55, using the ‘Unscaled 
ATN with nutrients’ version. The parameters used correspond to the 
one provided by the package and summarized in Supplementary 
Information IX. We fitted a generalized additive model (GAM) on this 
number of extinctions. The code used for our analysis is available  
at ref. 56.

Data Availability
The data used for this study can be accessed at ref. 25.

Code Availability
The code used for this study is available at ref. 56.
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Extended Data Fig. 1 | Response of the standard deviation of the preference 
distribution. Effect of resource availability on the effect size of the temperature 
effect on the standard deviation of body mass of the preference distribution. 
The solid black line represents the effect size calculated from the original 

model coefficients along the gradient of resource availability and the grey 
area associated uncertainty (95% confidence interval). The vertical dashed 
line represents the resource availability value above which temperature effect 
becomes significant (0 outside of the 95% confidence interval).
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