Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Aligning renewable energy expansion with climate-driven range shifts


Fossil fuel dependence can be reduced, in part, by renewable energy expansion. Increasingly, renewable energy siting seeks to avoid significant impacts on biodiversity but rarely considers how species ranges will shift under climate change. Here we undertake a systematic literature review on the topic and overlay future renewable energy siting maps with the ranges of two threatened species under future climate scenarios to highlight this potential conflict.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of species with documented impacts from RE expansion.
Fig. 2: Present and future species distribution models of Joshua tree and kit fox highlighting the areas of overlap with RE.

Similar content being viewed by others

Data availability

Datasets are available in the DRYAD repository, accessible at (ref. 57). Private access link to download the data files:

Code availability

Code for dispersal simulations and species distribution model analysis used in this study are adopted from (ref. 50) and (ref. 54).


  1. Bouckaert, S. et al. Net Zero by 2050: A Roadmap for the Global Energy Sector (International Energy Agency, 2021).

  2. Schachat, S. R. & Labandeira, C. C. Are insects heading toward their first mass extinction? Distinguishing turnover from crises in their fossil record. Ann. Entomol. Soc. 114, 99–118 (2021).

    Article  Google Scholar 

  3. Horváth, Z., Ptacnik, R., Vad, C. F. & Chase, J. M. Habitat loss over six decades accelerates regional and local biodiversity loss via changing landscape connectance. Ecol. Lett. 22, 1019–1027 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Weiskopf, S. R. et al. Climate change effects on biodiversity, ecosystems, ecosystem services and natural resource management in the United States. Sci. Total Environ. 733, 137782 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Lovering, J., Swain, M., Blomqvist, L. & Hernandez, R. R. Land-use intensity of electricity production and tomorrow’s energy landscape. PLoS ONE 17, e0270155 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Morelli, T. L. et al. Climate-change refugia: biodiversity in the slow lane. Front. Ecol. Environ. 18, 228–234 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Erfanian, M. B., Sagharyan, M., Memariani, F. & Ejtehadi, H. Predicting range shifts of three endangered endemic plants of the Khorassan-Kopet Dagh floristic province under global change. Sci. Rep. 11, 9159 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Troia, M. J., McManamay, R. A., Kao, S.-C. & O’Connor, P. W. A heuristic tool to assess regional impacts of renewable energy infrastructure on conservation areas. Biol. Conserv. 263, 109334 (2021).

    Article  Google Scholar 

  9. Grodsky, S. M. & Hernandez, R. R. Reduced ecosystem services of desert plants from ground-mounted solar energy development. Nat. Sustain. 3, 1036–1043 (2020).

    Article  Google Scholar 

  10. Hernandez, R. R. et al. Environmental impacts of utility-scale solar energy. Renew. Sust. Energy Rev. 29, 766–779 (2014).

    Article  Google Scholar 

  11. Walston, L. J. et al. Examining the potential for agricultural benefits from pollinator habitat at solar facilities in the United States. Environ. Sci. Technol. 52, 7566–7576 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Grodsky, S. M., Campbell, J. W. & Hernandez, R. R. Solar energy development impacts flower-visiting beetles and flies in the Mojave Desert. Biol. Conserv. 263, 109336 (2021).

    Article  Google Scholar 

  13. Sawyer, H. et al. Trade-offs between utility-scale solar development and ungulates on western rangelands. Front. Ecol. Environ. 20, 345–351 (2022).

    Article  Google Scholar 

  14. Conkling, T. J. et al. Vulnerability of avian populations to renewable energy production. R. Soc. Open Sci. 9, 211558 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  15. Levin, M. O. et al. Solar energy-driven land-cover change could alter landscapes critical to animal movement in the continental United States. Environ. Sci. Technol. 57, 11499–11509 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pérez-García, J. M. et al. Priority areas for conservation alone are not a good proxy for predicting the impact of renewable energy expansion. Proc. Natl Acad. Sci. USA 119, e2204505119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hernandez, R. R., Jordaan, S. M., Kaldunski, B. & Kumar, N. Aligning climate change and sustainable development goals with an innovation systems roadmap for renewable power. Front. Sustain. 1, 11 (2020).

    Article  Google Scholar 

  18. Dhunny, A. Z., Allam, Z., Lobine, D. & Lollchund, M. R. Sustainable renewable energy planning and wind farming optimization from a biodiversity perspective. Energy 185, 1282–1297 (2019).

    Article  Google Scholar 

  19. Jager, H. I., Efroymson, R. A. & McManamay, R. A. Renewable energy and biological conservation in a changing world. Biol. Conserv. 263, 109354 (2021).

    Article  Google Scholar 

  20. Mulvaney, D. Identifying the roots of Green Civil War over utility-scale solar energy projects on public lands across the American Southwest. J. Land Use Sci. 12, 493–515 (2017).

    Article  Google Scholar 

  21. Miranda, L. et al. Combining connectivity and species distribution modeling to define conservation and restoration priorities for multiple species: a case study in the eastern Amazon. Biol. Conserv. 257, 109148 (2021).

    Article  Google Scholar 

  22. Xing, L. & Wang, Y. A practical wind farm siting framework integrating ecosystem services—a case study of coastal China. Environ. Impact Assess. Rev. 90, 106636 (2021).

    Article  Google Scholar 

  23. González, A. & Connell, P. Developing a renewable energy planning decision-support tool: stakeholder input guiding strategic decisions. Appl. Energy 312, 118782 (2022).

    Article  Google Scholar 

  24. G7 Climate and Environment: Ministers’ Communiqué, London, 21 May 2021 (UK Government, 2021).

  25. Hernandez, R. R. et al. Techno–ecological synergies of solar energy for global sustainability. Nat. Sustain. 2, 560–568 (2019).

    Article  Google Scholar 

  26. Kruitwagen, L. et al. A global inventory of photovoltaic solar energy generating units. Nature 598, 604–610 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Dunnett, S., Holland, R. A., Taylor, G. & Eigenbrod, F. Predicted wind and solar energy expansion has minimal overlap with multiple conservation priorities across global regions. Proc. Natl Acad. Sci. USA 119, e2104764119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bernstein, J. M. Climate change, industrial solar, and the globalized local in joshua tree, California. Yearb. Assoc. Pac. Coast Geogr. 78, 80–93 (2016).

    Google Scholar 

  29. Lovich, J. E. & Ennen, J. R. Wildlife conservation and solar energy development in the desert southwest, United States. BioScience 61, 982–992 (2011).

    Article  Google Scholar 

  30. Chock, R. Y. et al. Evaluating potential effects of solar power facilities on wildlife from an animal behavior perspective. Conserv. Sci. Pract. 3, e319 (2021).

    Article  Google Scholar 

  31. Gibson, L., Wilman, E. N. & Laurance, W. F. How green is ‘green’ energy? Trends Ecol. Evol. 32, 922–935 (2017).

    Article  PubMed  Google Scholar 

  32. Agha, M., Lovich, J. E., Ennen, J. R. & Todd, B. D. Wind, sun, and wildlife: do wind and solar energy development ‘short-Circuit’ conservation in the western United States? Environ. Res. Lett. 15, 075004 (2020).

    Article  ADS  CAS  Google Scholar 

  33. Solar Impacts on Wildlife and Ecosystems: Request for Information Response Summary (DOE, 2020).

  34. Leskova, O. V., Frakes, R. A. & Markwith, S. H. Impacting habitat connectivity of the endangered Florida panther for the transition to utility-scale solar energy. J. Appl. Ecol. 59, 822–834 (2022).

    Article  Google Scholar 

  35. Martín, B., Perez-Bacalu, C., Onrubia, A., De Lucas, M. & Ferrer, M. Impact of wind farms on soaring bird populations at a migratory bottleneck. Eur. J. Wildl. Res. 64, 33 (2018).

    Article  Google Scholar 

  36. Wiens, J. D. Spatial demographic models to inform conservation planning of golden eagles in renewable energy landscapes. J. Raptor Res. 51, 234–257 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pruett, C. L., Patten, M. A. & Wolfe, D. H. Avoidance behavior by prairie grouse: implications for development of wind energy. Conserv. Biol.: J. Soc. Conserv. Biol. 23, 1253–1259 (2009).

    Article  Google Scholar 

  38. Lloyd, J. D. et al. Prairie grouse and wind energy: the state of the science and implications for risk assessment. Wildl. Soc. Bull. 46, e1305 (2022).

    Article  Google Scholar 

  39. Thaxter, C. B. et al. Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Proc. R. Soc. B: Biol. Sci. 284, 20170829 (2017).

    Article  Google Scholar 

  40. Song, N. et al. Effects of wind farms on the nest distribution of magpie (Pica pica) in agroforestry systems of Chongming Island. China Glob. Ecol. Conserv. 27, e01536 (2021).

    Google Scholar 

  41. Asar, S., Jalalpour, S., Ayoubi, F., Rahmani, M. R. & Rezaeian, M. PRISMA; Preferred Reporting Items for Systematic Reviews and Meta-Analyses. J. Rafsanjan Univ. Med. Sci. 15, 68–80 (2016).

    Google Scholar 

  42. Jeroen, O. pdftools: Text extraction, rendering and converting of pdf documents. R package version 2.3 (2019).

  43. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).

  44. Berrang-Ford, L. et al. A systematic global stocktake of evidence on human adaptation to climate change. Nat. Clim. Change 11, 989–1000 (2021).

    Article  ADS  Google Scholar 

  45. Telenius, A. Biodiversity information goes public: GBIF at your service. Nord. J. Bot. 29, 378–381 (2011).

    Article  Google Scholar 

  46. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-Km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  47. Jenkins, J. D., Mayfield, E. N., Larson, E. D., Pacala, S. W. & Greig, C. Mission Net-Zero America: the nation-building path to a prosperous, net-zero emissions economy. Joule 5, 2755–2761 (2021).

    Article  Google Scholar 

  48. Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).

    Article  ADS  Google Scholar 

  49. Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).

    Article  Google Scholar 

  50. Machado-Stredel, F., Cobos, M. E. & Peterson, A. T. A simulation-based method for selecting calibration areas for ecological niche models and species distribution models. Front. Biogeogr. 13, e48814 (2021).

    Article  Google Scholar 

  51. Ashraf, U. et al. Ecological niche model comparison under different climate scenarios: a case study of Olea spp. in Asia. Ecosphere 8, e01825 (2017).

    Article  Google Scholar 

  52. Bede-Fazekas, Á. & Somodi, I. The way bioclimatic variables are calculated has impact on potential distribution models. Methods Ecol. Evol. 11, 1559–1570 (2020).

    Article  Google Scholar 

  53. Janžekovič, F. & Novak, T. in Principal Component Analysis—Multidisciplinary Applications (ed. Sanguansat, P.) 127–142 (Intech Open, 2012).

  54. Cobos, M. E., Peterson, A. T., Barve, N. & Osorio-Olvera, L. Kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ 7, e6281 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Merow, C., Smith, M. J. & Silander, J. A. Jr A practical guide to MaxEnt for modeling species’ distributions: what it does and why inputs and settings matter. Ecography 36, 1058–1069 (2013).

    Article  ADS  Google Scholar 

  56. Peterson, A. T., Papeş, M. & Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model. 213, 63–72 (2008).

    Article  Google Scholar 

  57. Ashraf, U.,Morelli, T. L., Smith, A.B. & Hernandez, R. H. Aligning renewable energy expansion with climate-driven range shifts [Dataset]. Dryad (2024).

Download references


Funding for U.A., A.B.S. and R.R.H. was provided by the Alfred P. Sloan Foundation’s Energy and Environment Program G-2022-17177. Funding for R.R.H. was also provided by the Agricultural Experiment Station Hatch projects CA-R-A-6689-H and CA-D-LAW-2352-H, the Energy and Efficiency Institute, the Institute of the Environment and the Department of Land, Air & Water Resources at the University of California Davis (UCD). A.B.S. was partially supported by the Alan Graham Fund in Global Change. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government. We also thank the Global Ecology and Sustainability Lab (UCD) for their valuable comments that improved the manuscript. Icons for the taxonomic groups in Figs. 1 and 2 were retrieved from Noun Project (creator credits: E. Boatman, G. Lonescu, Aleks, J. Meysmans, Corpus Delicti, N. Smith, Vectors Market, M. Livolsi, G. Chicco, B. Agustín Amenábar Larraín and E. Harrison). Photos were retrieved from iNaturalist (creator credits: Chilipossum, Nmoorhatch, Opisska, Douggoldman, Jbartelett79, Johnkrampl, Milliebasden, Codrin_bucur, Ognevit and Euqirneto) and USGS (photographer credit: P. Leitner).

Author information

Authors and Affiliations



All authors conceived the idea for this manuscript. U.A. collected the data and conducted the analysis. U.A. and R.R.H. developed the figures and manuscript text draft. R.R.H., T.L.M. and A.B.S. edited the manuscript text and figures.

Corresponding author

Correspondence to Rebecca R. Hernandez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Henriette Jager and Andrea Santangeli for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Analysis of renewable energy siting and biodiversity-related academic articles.

Cumulative number (n = 157) of renewable energy siting- and biodiversity-related academic articles published over time, categorized by tier (a, b, c) and meeting criteria for inclusion in the systematic literature review. Articles that met criteria were allocated to a three-tiered, non-exclusive classification of increasing depth if it documented the: (a) concept of biodiversity, for example, the inclusion of wildlife and other taxa, protected areas for conservation and similar overlapping topics (n = 146, 93%), (b) role of climate change on biodiversity and/or the taxonomic group(s) and/or the species of interest (n = 12, 18.4%) and (c) role of climate change as a driver of range shifts for biodiversity and/or the taxonomic group(s) and/or the species of interest (n = 2, 1.9%).

Extended Data Fig. 2 Frequency of specific keywords within the corpus.

The x-axis represents the key terms used in the search, including the six key terms per category were: (1) Biodiversity - “biodiversity,” “climate change,” “protected area,” “endangered,” “species,” and “wildlife,”; (2) Methods - “multiple criteria decision analysis,” “criteria,” “analytic hierarchy process,” “overlay analysis”, “suitability prediction,” and “maxent;” (3) Renewable Energy Siting - “energy,” “solar,” “wind,” “site,” “plan,” and “planning.” The y-axis shows the mean number of appearances of these keywords in all the articles (error bars represent 95% confidence intervals).

Extended Data Fig. 3 Alignment of renewable energy expansion with climate-driven range shifts workflow.

An example workflow showing major action steps (a) to align renewable energy expansion with climate-driven range shifts. First, research activities (for example, systematic literature review, interviews) are conducted to inform and identify an appropriate list of species that are threatened by climate change and require mitigation action. Diverse research activities (for example, systematic literature review, interviews) that capture the full knowledge system of actors and entities for a specific context and/or geography (for example, wind development in Texas) will reduce the chances of omitting a species of interest. Next, individual or batch species distribution modelling (SDM) is performed for each species and overlaid with spatially explicit models of renewable energy (RE) scenarios. Subsequent analyses are conducted to identify “Optimal RE Siting Pathways” (that is, spatial datasets) and ultimately, a set of decision outcomes that minimize conflicts with species impacted by climate change (“Decision Outcomes”). We provide a more detailed example of “Core Alignment Analyses” in (b).

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Text 1 and 2.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, U., Morelli, T.L., Smith, A.B. et al. Aligning renewable energy expansion with climate-driven range shifts. Nat. Clim. Chang. 14, 242–246 (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing