Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

African rice cultivation linked to rising methane

Abstract

Africa has been identified as a major driver of the current rise in atmospheric methane, and this has been attributed to emissions from wetlands and livestock. Here we show that rapidly increasing rice cultivation is another important source, and we estimate that it accounts for 7% of the current global rise in methane emissions. Continued rice expansion to feed a rapidly growing population should be considered in climate change mitigation goals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Harvested rice area in Africa.
Fig. 2: Country-level rice emissions and their trends in Africa for 2008–2018.

Similar content being viewed by others

Data availability

The Food and Agriculture Organization database (FAOSTAT) is available at https://www.fao.org/faostat/en/#data/QCL. Methane emission estimates from the GCP are available at https://www.icos-cp.eu/GCP-CH4/2019. Source data are provided with this paper.

Code availability

The mathematical algorithm used for the methane emission estimation in our work is publicly available at https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch05_Cropland.pdf.

References

  1. Szopa, S. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 817–922 (IPCC, Cambridge Univ. Press, 2021).

  2. Global Methane Pledge (Climate and Clean Air Coalition, 2021); https://www.globalmethanepledge.org/

  3. Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).

    Article  ADS  Google Scholar 

  4. Jackson, R. B. et al. Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environ. Res. Lett. 15, 071002 (2020).

    Article  ADS  CAS  Google Scholar 

  5. Yin, Y. et al. Accelerating methane growth rate from 2010 to 2017: leading contributions from the tropics and East Asia. Atmos. Chem. Phys. 21, 12631–12647 (2021).

    Article  ADS  CAS  Google Scholar 

  6. Feng, L., Palmer, P. I., Zhu, S., Parker, R. J. & Liu, Y. Tropical methane emissions explain large fraction of recent changes in global atmospheric methane growth rate. Nat. Commun. 13, 1378 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peng, S. et al. Wetland emission and atmospheric sink changes explain methane growth in 2020. Nature 612, 477–482 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Qu, Z. et al. Attribution of the 2020 surge in atmospheric methane by inverse analysis of GOSAT observations. Environ. Res. Lett. 17, 094003 (2022).

    Article  ADS  Google Scholar 

  9. Zhang, Y. et al. Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse analysis of GOSAT observations. Atmos. Chem. Phys. 21, 3643–3666 (2021).

    Article  ADS  CAS  Google Scholar 

  10. Basu, S. et al. Estimating emissions of methane consistent with atmospheric measurements of methane and δ13C of methane. Atmos. Chem. Phys. 22, 15351–15377 (2022).

    Article  ADS  CAS  Google Scholar 

  11. Oh, Y. et al. Improved global wetland carbon isotopic signatures support post-2006 microbial methane emission increase. Commun. Earth Environ. 3, 159 (2022).

    Article  ADS  Google Scholar 

  12. Lu, X. et al. Global methane budget and trend, 2010–2017: complementarity of inverse analyses using in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) observations. Atmos. Chem. Phys. 21, 4637–4657 (2021).

    Article  ADS  CAS  Google Scholar 

  13. Maasakkers, J. D. et al. Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015. Atmos. Chem. Phys. 19, 7859–7881 (2019).

    Article  ADS  CAS  Google Scholar 

  14. Deininger, K. & Byerlee, D. Rising Global Interest in Farmland: Can It Yield Sustainable and Equitable Benefits? (World Bank Publications, 2011).

  15. MacDonald, A. M., Bonsor, H. C., Dochartaigh, B. É. Ó. & Taylor, R. G. Quantitative maps of groundwater resources in Africa. Environ. Res. Lett. 7, 024009 (2012).

    Article  ADS  Google Scholar 

  16. Arouna, A., Fatognon, I. A., Saito, K. & Futakuchi, K. Moving toward rice self-sufficiency in sub-Saharan Africa by 2030: lessons learned from 10 years of the Coalition for African Rice Development. World Dev. Perspect. 21, 100291 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Coalition for African Rice Development, Phase 2 (CARD, 2019); https://riceforafrica.net/wp-content/uploads/2021/09/pamphlet_en1.pdf

  18. Janssens-Maenhout, G. et al. EDGAR v4. 3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth Syst. Sci. Data 11, 959–1002 (2019).

    Article  ADS  Google Scholar 

  19. IPCC 2006 IPCC Guidelines for National Greenhouse Gas Inventories (eds Eggelston, S. et al.) Vol. 2, Ch. 4 (IGES, 2006).

  20. Nikolaisen, M. et al. Methane emissions from rice paddies globally: a quantitative statistical review of controlling variables and modelling of emission factors. J. Clean. Prod. 409, 137245 (2023).

    Article  CAS  Google Scholar 

  21. World Rice Statistics: Distribution of Rice Crop Area by Environment (International Rice Research Institute, 2007); https://www.irri.org/resources-and-tools/publications

  22. Saito, K., Asai, H., Zhao, D., Laborte, A. G. & Grenier, C. Progress in varietal improvement for increasing upland rice productivity in the tropics. Plant Prod. Sci. 21, 145–158 (2018).

    Article  Google Scholar 

  23. Saito, K., Laborte, A., Graterol, M. & and Eduardo, J. Global Upland Rice Area 2019 (Harvard Dataverse, 2019); https://doi.org/10.7910/DVN/2DPRHE

  24. Diagne, A., Amovin-Assagba, E., Futakuchi, K. & Wopereis, M. C. in Realizing Africa’s Rice Promise (eds Farrar, N. et al.) 35–45 (CABI, 2015).

  25. TFI 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2019).

  26. Seck, P. A., Tollens, E., Wopereis, M. C., Diagne, A. & Bamba, I. Rising trends and variability of rice prices: threats and opportunities for sub-Saharan Africa. Food Policy 35, 403–411 (2010).

    Article  Google Scholar 

  27. Tubiello, F. N. et al. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 8, 015009 (2013).

    Article  ADS  Google Scholar 

  28. Tubiello, F. N. et al. The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob. Change Biol. 21, 2655–2660 (2015).

    Article  ADS  Google Scholar 

  29. Boateng, K. K., Obeng, G. Y. & Mensah, E. Rice cultivation and greenhouse gas emissions: a review and conceptual framework with reference to Ghana. Agriculture 7, 7 (2017).

    Article  Google Scholar 

  30. Hardy, A., Oakes, G. & Ettritch, G. Tropical wetland (TropWet) mapping tool: the automatic detection of open and vegetated waterbodies in Google Earth Engine for tropical wetlands. Remote Sens. 12, 1182 (2020).

    Article  ADS  Google Scholar 

  31. Hardy, A., Palmer, P. I. & Oakes, G. Satellite data reveal how Sudd wetland dynamics are linked with globally-significant methane emissions. Environ. Res. Lett. 18, 074044 (2023).

    Article  ADS  Google Scholar 

  32. FAOSTAT Online Statistical Service (Food and Agriculture Organization, 2023); https://www.fao.org/statistics/en/

Download references

Acknowledgements

This work was funded by the National Aeronautics and Space Administration Carbon Monitoring System and by the Harvard University Climate Change Solutions Fund. We thank L. Höglund-Isaksson (International Institute for Applied Systems Analysis, Austria) and M. Hayek (New York University, United States) for their advice on African rice.

Author information

Authors and Affiliations

Authors

Contributions

Z.C. and D.J.J. contributed to the study conceptualization. Z.C. conducted the data collection and analysis with contributions from D.J.J., N.B., H.L. and H.N. Z.C. and D.J.J. wrote the paper with input from all authors.

Corresponding author

Correspondence to Zichong Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Shushi Peng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1.

Source data

Source Data Fig. 1

Data for both panels of Fig. 1.

Source Data Fig. 2

Data for both panels of Fig. 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Balasus, N., Lin, H. et al. African rice cultivation linked to rising methane. Nat. Clim. Chang. 14, 148–151 (2024). https://doi.org/10.1038/s41558-023-01907-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-023-01907-x

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene