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Production vulnerability to wheat blast 
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Wheat blast is a devastating disease caused by the fungal pathogen 
Magnaporthe oryzae pathotype Triticum that has spread to both 
neighbouring and distant countries following its emergence in Brazil in the 
1980s. Under climate change conditions, wheat blast is predicted to spread 
primarily in tropical regions. Here we coupled a wheat crop simulation 
model with a newly developed wheat blast model, to provide quantitative 
global estimates of wheat blast vulnerability under current and future 
climates. Under current climatic conditions, 6.4 million hectares of arable 
land is potentially vulnerable to wheat blast. A more humid and warmer 
climate in the future (Representative Concentration Pathway 8.5) is likely 
to increase the area suitable for wheat blast infection, particularly in the 
Southern Hemisphere, and reduce global wheat production by 69 million 
tons per year (13% decrease) by mid-century. Impacts of climate change 
could be further exacerbated and food security problems increased.

In the 2021–2022 season, wheat was grown on 222 million hectares glob-
ally, producing 779 million metric tons of grain1. Global wheat production 
is continuously challenged by diseases and pests that are evolving and 
spreading to new areas as agricultural practices, climate and global trade 
change. Wheat blast disease caused by the fungal pathogen Magnaporthe 
oryzae pathotype Triticum (MoT) has become a substantial threat to 
wheat production in warm and humid areas2. The outbreak of wheat 
blast currently affecting production was first reported in Brazil in 1985 
and then gradually spread to neighbouring countries, causing remark-
able yield losses3. In February 2016, the first observation of wheat blast 
outside South America was recorded in Bangladesh4,5. Shortly after, in 
2018, wheat blast was observed for the first time in Zambia6. In this study, 
we simulate the spread and impact of wheat blast disease across conti-
nents in current and future climate scenarios, quantifying separately 
the direct and indirect effects of climate change on wheat production.

Previous yield impact studies have considered the direct effects of 
climate change from increasing temperatures, precipitation variability 

and elevated atmospheric CO2 concentrations on crop production and 
have shown that wheat yields in the Southern Hemisphere are likely to 
be particularly negatively impacted7–10. In this Article, we used the same 
calibrated wheat simulation model (DSSAT Nwheat) as it is embedded 
in a global-scale gridded simulation platform for predicting worldwide 
crop growth and yield11. To integrate the potential effects of wheat 
blast on yield, a generic disease model (GDM)12,13 was parameterized 
for wheat blast (Extended Data Table 1). The models were coupled at 
two points. The weather module of DSSAT Nwheat feeds daily informa-
tion about the environment to the wheat blast model so the density of 
the fungal spore cloud can be calculated. In turn, the disease damage 
simulator feeds back information daily to the pest damage modules 
of DSSAT Nwheat, which updates variables related to leaf, stem, root, 
seed growth and other plant organs12. Wheat blast primarily affects 
the maturing ear but can go on to infect other parts of the plant. Here 
the damage caused by wheat blast infection was estimated solely on 
the grain portion of wheat.
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Environmental Prediction Climate Forecast System Reanalysis cli-
mate data that are concentrated mainly in the southeast region16,17. By 
contrast, the risks of wheat blast in Europe and East Asia are low, with 
close to zero simulated yield loss in their main wheat production areas, 
except for warm humid areas in southeast China (Fig. 1).

Under climate change scenarios for the period 2040–2070 
(Extended Data Table 2), wheat blast is predicted to spread primarily 
in the tropics and Southern Hemisphere as temperature and relative 
humidity (RH) increase, resulting in a potential 13% global loss in wheat 
production annually (Fig. 2). Note that reported yield losses from 
wheat blast under climate change scenarios consider only the disease 
impact on yield, excluding percentage yield change due to climate 
change relative to baseline (equation (11)). A global climate change 
study using the same DSSAT Nwheat model and input data reported 
a mean climate change grain yield impact of 1.9% and shows country 
and regional climate change impact7. Country-level and subnational 
yield data from the Food and Agriculture Organization (FAO) of the 
United Nations database were not compared in this study due to a 
lack of methodological clarity in accounting the impacts of pest and 
diseases in these reports.

In South America, wheat blast could further expand mainly in 
countries that already suffer losses due to the disease, including Brazil, 
Argentina, Bolivia and Paraguay6. The projections suggest that the 
presence of wheat blast may also increase in the USA and Mexico, and 
that the disease may affect previously unaffected countries including 
Uruguay, Japan, Italy, Spain and New Zealand, among others (Fig. 2). 
In Africa, countries including Zambia, Ethiopia, Kenya and Congo 
may suffer from yield losses resulting from the expansion of wheat 
blast into vulnerable areas. Conversely, under future climates, some 
parts of India may become less susceptible to wheat blast infection 
if dry seasonal conditions prevail with more frequent extreme high 
temperatures (above 35 °C) during the latter part of the wheat grow-
ing season. While such high temperatures reduce the likelihood of 
wheat blast infection, they cause terminal heat stress, reducing overall 
yield potential18. Wheat blast may also expand into southeast China, 
potentially incurring yield losses. Recent studies strongly suggest 
that M. oryzae pathotypes capable of infecting wheat have, in fact, the 
potential to spread into China with rising temperatures19.

In Oceania and North America only a small portion of wheat grow-
ing area is currently vulnerable to wheat blast, but under climate change 
this may respectively expand to 5% and 12% of the total wheat area of 

For baseline simulations we used weather data from 1980 to 2010 
as input to represent recent conditions7. The results show substantial 
potential yield losses in South America, South Africa and South Asia, 
which are regions currently affected by wheat blast (Fig. 1). Similar to 
the reported occurrences of wheat blast in Brazil14, our simulations 
show potential for large yield losses in southern Brazil, especially in 
the State of Paraná. In Bangladesh, the simulated vulnerable regions 
also coincide well with the main affected regions reported in 2016  
(refs. 4–6). In the simulations, districts in southern Bangladesh appear 
to be most vulnerable, while those in the north, due to cooler and drier 
weather conditions, have a lower risk for yield loss. A previous study15 
used a climate analogue model (which assumed areas within South Asia 
with a similar climate as epidemic sites from Bangladesh would be at 
risk) considering only rainfall, temperatures and humidity. Here, in 
addition to climate vulnerability, inoculum build-up, spore survival, 
infection and crop damage were considered. (Extended Data Figs. 1 
and 2). We equate vulnerability with the risk of crop losses or failure as 
a result of biotic factors. More specifically, we define vulnerability as a 
suite of environmental conditions and host plant presence that favours 
wheat blast spread, infection and production losses. For Zambia, our 
model suggests large areas could be vulnerable to the pathogen. An 
evaluation of the coupled model was performed by simulating the 
wheat blast outbreaks in Bangladesh and Zambia in 2016 and 2018, 
respectively, showing that the method was capable of adequately 
estimating epidemic and non-epidemic years during wheat growing 
season (Extended Data Fig. 3). Model evaluation was conducted using 
field collected data for Brazil (Extended Data Fig. 4), Bangladesh and 
Zambia (Extended Data Fig. 5). Furthermore, field infestation records 
from Brazil, Bangladesh and Zambia were compared using the confu-
sion matrix approach to our model simulations of disease potential, 
and the results show the model performed satisfactorily (Extended 
Data Fig. 6).

Under these historical conditions we found potential for yield 
loss even in regions where the disease is not yet present. In some coun-
tries like Argentina, Zambia and Bangladesh, wheat blast has only 
been reported in a small portion of the area that could potentially be 
affected. Other countries or regions like Uruguay, Central America, 
southeastern USA, East Africa, India and Eastern Australia are cur-
rently unaffected but according to our model simulations are vulner-
able to wheat blast. Previous studies have detected similar climate 
suitability for infection in the USA based on The National Centers for 
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Fig. 1 | Baseline potential wheat yield loss due to wheat blast simulated 
with climate data from 1980 to 2010. The Decision Support System for 
Agrotechnology Transfer suite39 with the NWheat crop model40 was coupled41 to 

a GDM12,13 parametrized for wheat blast, using global input data7 in a global-scale 
gridded simulation platform11. Coloured areas represent the wheat growing areas 
of the world42.
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these countries (Fig. 3). The cold climate in Europe and other coun-
tries where snow falls reduces the chances of survival of the wheat 
blast spore and thus minimizes the probability of infection (Fig. 3). 
Although the conditions in the Northern Hemisphere, in general, are 
not suitable for wheat blast, countries in higher latitudes are affected 

by different insect pests and diseases, and climate change will poten-
tially alter their distributions over time20. European regions closer to 
the Mediterranean may still develop a climate propitious to wheat 
blast infection, for example, Italy and some parts of southern France 
and Spain (Fig. 2). Some wheat growing areas in East Asia may also be 
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Fig. 2 | Potential wheat yield loss from wheat blast simulated for climate 
change scenarios for 2040–2070. Representative Concentration Pathway 8.5 
simulated with five GCMs was used as input for the Decision Support System for 
Agrotechnology Transfer suite39 with the NWheat crop model40 coupled41 to the 

GDM12,13 parametrized for wheat blast, using global input data7 in a global-scale 
gridded simulation platform11. Coloured areas represent the wheat growing areas 
of the world42.
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Fig. 3 | Potential continental wheat areas vulnerable to wheat blast damage 
simulated for the 1980–2010 baseline and for 2040–2070 under climate 
change. Simulations used historical data for 1980–2010 or the output of five 
GCMs of Representative Concentration Pathway 8.5 (RCP8.5) for 2040–2070. 
Boxplots indicate the variability in percentage of wheat growing area per 
country within continental region that are vulnerable to wheat blast for baseline 
(blue) and future climate change scenarios (orange) where boxes represent the 
interquartile range and whiskers extend to the 10th and 90th percentiles. The 
analysis focused exclusively on nations with wheat growing areas leading to a 

total of 33 countries for Africa (n = 33), 3 countries for North America (n = 3),  
5 countries for South America (n = 5), 35 countries for Europe (n = 35),  
4 countries for East Asia (n = 4), 4 countries for South Asia (n = 4) and 2 countries 
for Oceania (n = 2). Error bars represent differences among countries within the 
same continental region. Violin plots show the range and relative distribution 
of variability in disease vulnerability for each continental region. The median of 
each distribution is shown by the horizontal line in the box, and the mean is given 
beside each plot. Continental regions are defined in Methods.
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affected by climate change (Fig. 3), with the vulnerability being mostly 
concentrated in southern China (Fig. 2). The simulations confirmed 
that the main wheat producing areas vulnerable to wheat blast are in 
South America, where the disease is already present, and in Africa and 
South Asia16 where the pathogen has recently emerged (Fig. 3). It should 
be noted that the median values for the percentage of vulnerable areas 
in Fig. 3 are often different from the mean due to uneven distributions 
that differ for each continental region. The standard error bars are high 
since we are considering the variability among countries aggregated 
into these regions. The distribution for South America suggests it will 
continue to be threatened by wheat blast in the future, and no less 
than 30% of wheat area would be vulnerable compared with the lower 
estimated limit of 5% today. The most extreme vulnerability to wheat 
blast estimated under future climates is in South America and Africa, 
which may both see up to 75% of wheat areas becoming vulnerable to 
the disease (Fig. 3).

Simulations of wheat blast in Europe and East Asia show the poten-
tial for a small production loss under both scenarios (Fig. 4). If parts of 
Australia and New Zealand become increasingly susceptible to wheat 
blast as predicted (Fig. 2), Oceania would experience considerable 
yield losses (Figs. 2 and 4). As the climate warms southern China and 
Japan could also become more suitable environments for wheat blast 
with greater losses expected at harvest than today.

Climate change-induced temperature increase probably con-
tributed to recent wheat blast epidemics such as the 2016 Bangladesh 
outbreak (Extended Data Figs. 3 and 4) and will drive future occurrences 
in new countries21. The present crop-disease simulation study shows the 
potential global risk associated with the spread of wheat blast. Wheat 
blast already threatens 6.4 million hectares under current climatic 
conditions, which will be further exacerbated by climate change to 

13.5 million hectares by mid-century. The increase in vulnerable areas 
to wheat blast at mid-century is attributed to a combination of rising 
temperatures and prolonged leaf wetness caused by higher RH (equa-
tions (6)–(9)), which create conditions for the pathogen to potentially 
develop and spread. Such areas are typically concentrated in lower 
latitudes closer to the Equator, where optimal environmental condi-
tions for wheat blast are more likely to occur. At mid-century, wheat 
blast alone could reduce global wheat production by 13% (equation 
(11)). Under these future climatic conditions, South America will be the 
most affected region, although African and South Asian countries will 
also be increasingly vulnerable to wheat blast. These areas are noted 
as some of the most vulnerable areas to the direct impacts of climate 
change7, where food security is already a considerable concern, and 
wheat consumption is increasing, especially in urban areas22.

Even though previous studies simulated many fungal plant dis-
eases for several crops including wheat, wheat blast is often not consid-
ered20,23,24. We conversely show that important global wheat growing 
areas can be vulnerable and face considerable risks of emerging wheat 
blast outbreaks beyond Bangladesh and Zambia. In many of these regions, 
farmers may need to turn to less susceptible crops to mitigate production 
and financial losses. For example, maize is increasingly grown in former 
wheat growing areas in Midwest Brazil25. Breeding blast-resistant wheat 
is a very important strategy6 that could mitigate future losses in new 
vulnerable areas and has already been initiated26. Besides the use of plant 
breeding and genomic selection to produce wheat varieties resistant to 
wheat blast, the adjustment in planting date is another effective miti-
gating strategy against the disease. In regions where the MoT is already 
present, there is a synchronism between the host and pathogen phenol-
ogy. During the flowering stage, rain followed by hot and humid weather 
can promote disease development6. To reduce the risk of infection, it is 
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Fig. 4 | Potential mean wheat production loss due to wheat blast damage 
simulated for the 1980–2010 baseline and for 2040–2070 under climate 
change. Scenarios were simulated using five GCMs for Representative 
Concentration Pathway 8.5 (RCP8.5) for 2040–2070 (orange), while historical 
data were used for 1980–2010 (blue). The direct climate change impact on 
yield was simulated with and without the modelled potential disease impact 
to calculate the per cent production loss due to wheat blast alone. Error bars 
indicate the variability in results among countries in each continental region for 

future climate change scenarios using five different GCMs based on the 10th and 
90th percentiles. The dot plot corresponds to individual values. The analysis 
focused exclusively on nations with wheat growing areas with a total of 33 
countries for Africa (n = 165), 3 countries for North America (n = 15), 5 countries 
for South America (n = 25), 35 countries for Europe (n = 175), 4 countries for East 
Asia (n = 20), 4 countries for South Asia (n = 20) and 2 countries for Oceania 
(n = 10). Continental regions are defined in Methods.
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recommended to avoid early planting in central Brazil and late planting 
in Bangladesh, as these periods coincide with high temperatures and 
RH due to increased precipitation levels27. The potential exacerbation of 
the synchronism between host and pathogen phenology due to climate 
change highlights the importance of implementing effective mitigation 
strategies to manage wheat blast. Timely planting to escape conducive 
wheat blast conditions at the heading stage, combined with other rel-
evant practices, has proven to be effective28.

Moreover, wheat blast itself is changing in a way that may adversely 
impact wheat production if it overcomes host resistance, gains in 
virulence and becomes more resistant to fungicide4,5. Several studies 
have investigated the capability of fungal pathogen adaptation to envi-
ronmental conditions, which can lead to an increase of virulence and 
thermal aptitude for infection29,30. A study about the wheat pathogen 
Zymoseptoria tritici has shown a high plasticity and variation in sensi-
tivity to temperature conditions over geographic and seasonal scales 
within the European-Mediterranean region31. The same can also happen 
with MoT strains, possibly leading to unprecedented yield losses that 
can exacerbate the pressure on food security and wheat production 
under the context of climate change.

Although previous research indicates that isolates of the Triticum 
pathotype have the capability for infecting other cultivated crops such 
as barley, oats and rye and forage grasses32,33, increasing vegetal diver-
sity and crop rotation in agricultural landscape has proven to reduce 
the impact of fungal diseases34,35. A rice–wheat rotation might serve 
as an approach to reduce the presence of MoT in the fields since it has 
been reported that no cross infection could happen between rice and 
wheat blast isolates36. However, the Triticum pathotype population 
evolves rapidly, leading to a higher level of genetic diversity com-
pared with other pathotypes37. This increased diversity can hinder 
natural responses against the pathotype, making it more challenging 
to control38. Vigilance and urgent action are needed to prepare for the 
increasing wheat blast threat through multiple mitigating strategies 
including ensuring new cultivars have durable resistance, identifying 
and implementing integrated disease management practices, and 
equipping farmers with adequate agronomic practices including adop-
tion of conservation agriculture.
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Methods
Crop and disease simulation models
DSSAT Nwheat model. The wheat simulation model used in this study 
was the Nwheat model40, part of the Decision Support System for Agro-
technology Transfer, DSSAT v.4.8.0.12 (ref. 39) (Extended Data Fig. 1). 
The selected wheat model has been widely tested and used to study 
diverse cropping systems around the world40 and was recently con-
nected with pest coupling points41 designed for linking the wheat model 
with pest and disease models. The DSSAT Nwheat crop simulation 
model is embedded within the Mink system, which is a global-scale grid-
ded simulation platform for the use of crop and economic models for 
agriculture at a global scale11 being calibrated and evaluated for assess-
ment of wheat yield and production under current and future climates7.

GDM
The GDM12,13 can be parameterized to simulate multiple diseases in 
several crops. Weather-driven epidemiological models traditionally 
evaluate infection risk on the basis of climate conditions and consider 
the inoculum availability according to their specific requirements23,43,44. 
Studies using this modelling approach led to insightful conclusions 
that strengthen the association between MoT infection and RH45. How-
ever, alternate hosts (grasses) in the landscape can serve as potential 
reservoirs for the inoculum outside the wheat growing season33,46,47. 
Thus, spore production is more than just dependent on seasonal cli-
mate conditions48. However, to consider seasonal variability, regional 
daily weather data were used in our study. The GDM model considers 
this and simulates the early season inoculum build-up by considering 
the presence of alternative hosts in the surrounding area before the 
wheat grain filling stage14. Daily inoculum dynamics, including spore 
density in a 1 m3 volume over the crop canopy, survivability and infec-
tion, are simulated in a mechanistic way to determine the establishment 
of the disease and predict wheat blast damage rates during grain-filling 
stage13 (Extended Data Fig. 2). Consequently, simulated locations 
with suitable in-season climate conditions but with a high density of 
inoculum during the flowering to the grain-filling stage will result in 
infection and damage on grain formation and filling48.

The DSSAT Nwheat model was coupled41 with the GDM12,13 para-
metrized for wheat blast using a monolithic approach and global input 
data7. The communication between the GDM and DSSAT Nwheat model 
occurs in a daily step through coupling points41 that can affect and 
reduce state and rate variables such as leaf, stem, root, seed growth and 
other plant organs progress according to the type of disease infection 
and damage12. The DSSAT Nwheat model is the only wheat model publicly 
available on DSSAT source code with pest coupling points that allow the 
connection with disease models to estimate biotic damage41. A similar 
coupling approach has been created using the STICS wheat model to 
simulate leaf rust of wheat and estimate the climate change effects on 
disease dynamics24. However, no coupled process-based model had been 
parameterized so far to estimate wheat blast and quantify yield loss due 
to infection. The GDM requires several input parameters related to crop 
growth, senescence and environmental conditions implemented in the 
DSSAT-CSM PEST subroutine (Extended Data Figs. 1 and 2).

The GDM was structured following the principles for coupling 
host and disease dynamics13. The disease dynamics were handled at 
cohort level49. The model was designed to represent in detail the dis-
ease progress and mimic the disease life cycle. When simulating wheat 
blast disease, the daily grain mass from the simulated crop growth is 
regarded as an individual cohort and assumed as a potential infection 
spot. The disease onset is the result of airborne initial inoculum locally 
or externally produced. Each cohort represents the crop develop-
ment on a given day and was used as input for the disease model to 
estimate sporulation, lesion development and, finally, the total wheat 
blast impact on the crop on the specific day. The days favouring infec-
tion are determined using a combination of conditional rulesets. The 
model receives as input the cardinal maximum, minimum and optimal 

temperatures to calculate the temperature favourability during an 
infection period. For wheat blast, 35 °C was considered as the maximum 
temperature, 15 °C as the minimum temperature and 28 °C as the opti-
mal temperature for infection. Daily RH above 90% was deemed favour-
able to wheat blast infection as water vapour will begin to condense 
into water droplets over the plant surface50. The wheat blast model 
utilizes a RH threshold that, when exceeded for a minimum duration 
of 8 h in a single day, triggers the simulation of fungus development. 
A trapezoidal function, based on cohort age, is used to simulate spore 
production efficiency and estimated for each cohort the sporulation 
amount in proportion to the infected lesions (Extended Data Table 1). 
The presence of alternative hosts in the landscape was considered to 
predict inoculum build-up during the months preceding spike emer-
gence14. For each year and each grid cell, the spore cloud simulation 
commences 60 days before the planting date, assuming the presence 
of a virtual bondless area with alternate hosts in which the pathogen 
could infect and initiate the inoculum build-up.

Furthermore, with respect to precipitation, light rainfall (less than 
5 mm) is considered desirable for MoT host infection. However, intense 
rainfalls (above 15 mm) can cause run-off of MoT conidia in sporu-
lating lesions and the freshly deposited spores on leaves and wheat 
spikes48,51. Thus, when the daily precipitation is above 15 mm, days 
favouring infection is set to be non-favourable for MoT. The ultraviolet 
light reduces spore survivability52, and the effects were considered 
according to the difference between the daily maximum and minimum 
temperature. High values of the difference indicate clear days, while 
low values indicate cloudy days that favour the longevity of spores in 
the atmosphere. Under favourable environmental conditions, infection 
takes place forming an invisible lesion. At the end of the latent period, 
the lesion becomes visible and infectious and enlarges with time. The 
model starts with an estimation of the initial pustule size after infec-
tion. The growth of lesions was determined using a logistic function 
associated with the number of hours per day with RH exceeding 90%. 
At the infectious stage, the spores produced are distributed at three 
scales of spatial hierarchy53. The rate of infection of a potential spot 
is computed according to ratios of auto deposition. The GDM model 
then estimates the total diseased area based on the lesion area with 
non-visible symptoms. A detailed description of the GDM model is 
given in Extended Data Fig. 2.

Yield loss estimation
Wheat blast infection impacts crop productivity by causing a deficiency 
in nutrient translocation, which results in bleached spikes and small, 
shrivelled and deformed grains54. To simulate damage caused by the 
disease, the epidemiological model estimates the daily percentage of 
kernels infected according to the total infected area calculated by the 
GDM. Once the simulation reaches the beginning of the grain forma-
tion and filling stage and communicates it to the crop model through a 
pest coupling point via seed-related state variables41. The daily damage 
caused by the infection was quantified as follows:

SWIDOT = SWIDOT + SDWT × (PSDD100 ) , (1)

where SWIDOT is the daily seed mass damage (g m−2 per day), SDWT 
is the daily seed weight (g per plant per day) and PSDD is the daily 
percentage of seed mass damage (%).

The daily damage reduces the simulated grain weight by

GWAD = GWAD − (SWIDOTPLTPOP ) , (2)

where GWAD is the daily grain weight per plant (g per plant per day) 
and PLTPOP is plant population (plants m−2), which have an impact on 
simulated grain number estimated as
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GPP = GPP − GPP ×
( SWIDOT
PLTPOP

)
GWAD , (3)

where GPP is the daily grain number per plant (g per plant per day).
The impact of the fungal infection also reflects on the grain nitro-

gen, which further reduces grain development.

WTNSD =WTNSD −WTNSD ×
( SWIDOT
PLTPOP

)
GWAD , (4)

where WTNSD is the daily weight of nitrogen in seed part (g m−2 per day).
Rising temperatures and changes in precipitation patterns can 

create a more favourable environment for the fungus to grow and 
thrive on wheat and other plant species. This allows the inoculum to 
build up in an area, increasing the risk of wheat infection during grain 
development. Additionally, increased carbon dioxide levels in the 
atmosphere are likely to increase the growth and reproduction of the 
fungus, further exacerbating the problem55.

Although wheat blast is mainly considered a wheat spike disease 
that restricts the development of grains, the pathogen infection can 
also occur on all other above-ground parts of the plant with various 
impacts on crop physiology depending on which organs are infected. 
For example, MoT can interfere with plant growth and photosynthesis 
before flowering, leading to poor kernel development or even seed 
abortion later in the growing season56. However, the disease model used 
in this study accounts only for pathogen infection on the wheat spikes. 
Therefore, the production loss in susceptible areas may potentially be 
greater than suggested in this study.

Climate data
One of the required variables for simulating wheat blast is RH. The 
global gridded weather data set from AgEra5 (ref. 57) was uploaded 
into the CIMMYT high-performance computing cluster that included 
hourly dewpoint (Dew, K) and temperature (T, K). For each point and 
with these variables, the RH was calculated through

RH = 100 × ( e
( 17.625×Dew
243.04+Dew

)

e(
17.625×T
243.04+T

)
) , (5)

where RH is hourly RH, Dew is hourly dewpoint and T is hourly 
temperature.

After estimating the hourly RH, the threshold of 90% was consid-
ered as favourable for wheat blast infection because at that humidity 
level water droplets form on the plant surface50. With this threshold, 
the data were summarized into the daily total number of hours with RH 
>90% (RH90, input required for the disease model). While it is possible 
that irrigation methods can create a more humid microclimate that is 
conducive to the growth and spread of the MoT, irrigation was not con-
sidered as a factor for the disease occurrence and spread in our study. A 
total of 66,880 files (69 GB), each file containing weather information 
for a point in the global grid (0.5 × 0.5 resolution), were updated with 
the RH data for a total of 30 years. The updated data set contains data 
from 1980 to 2010 for the baseline simulations7.

The years 1980–2010 were selected as the historical baseline7. Daily 
maximum temperature (Tmax) and minimum temperature (Tmin), rainfall 
and solar radiation were collected from National Centers for Environ-
mental Prediction and University Corporation for Atmospheric Research 
(NCEP/NCAR) re-analysis database58. The spatial resolution of the NCEP 
data for Tmax and Tmin, and solar radiation was approximately 1.884° N/S 
and 1.865° E/W. Rainfall data at 0.5° resolution corresponding to the same 
time period was collected from the Global Precipitation Climatological 
Center of the National Oceanic and Atmospheric Administration.

For the future scenarios (2041–2070), Representative Concen-
tration Pathways 8.5, which represents the highest greenhouse gas 

emission scenario, was selected7. In total, five global climate models 
(GCMs) were considered for simulating the future scenarios: (1) US 
Geophysical Fluid Dynamics Laboratory, (2) The Institute Pierre Simon 
Laplace, (3) UK Hadley Centre for Climate Prediction and Research, (4) 
Japan Agency for Marine-Earth Science and Technology, and (5) The 
Norwegian Climate Centre7 (Extended Data Table 2). The baseline and 
climate change period were chosen in order to simulate 30 years as a 
standard representation of temporal and spatial climate variability59. 
Additionally, AgMIP has been using this approach as standard, which 
makes our results also comparable with many other AgMIP studies8.

Since future climate change data lacked RH information, the RH 
was calculated on the basis of daily maximum and minimum tempera-
ture. First, the hourly temperature was estimated through a sinusoidal 
function utilized by DSSAT CSM-CROPGRO model for calculating the 
effect of temperature on the development of legumes crops in hourly 
steps39. Then, the dewpoint point was estimated through the daily 
temperature.

Dewd = (−0.036 × Tmean) + (0.9679 × Tmin)

+0.0072 × (Tmax − Tmin) + 1.0111,
(6)

where Dewd is daily dewpoint, Tmean is daily mean temperature, Tmin is 
daily minimum temperature and Tmax is daily maximum temperature.

This assumption allowed us to estimate the saturated vapour 
pressure60,

Es = 6.11 × 10
( 7.5×T
237.7+T

), (7)

where Es is hourly saturated vapour pressure, the actual vapour 
pressure60

E = 6.11 × 10(
7.5×Dew
237.7+Dew

), (8)

where E is hourly vapour pressure, and then calculate the hourly RH

RH = ( E
Es
) × 100. (9)

This approach was compared with the RH data used for the base-
line for multiple locations (Londrina, Brazil; Obregon, Mexico; Jashore, 
Bangladesh; and Mpika, Zambia) to assess the accuracy of the resulting 
data. The RH calculated from temperature was, overall, a reasonable 
projection compared to the AgERA5 data (Extended Data Fig. 3). This 
method supplied estimates in the absence of hourly RH data from the 
GCMs, but could add additional uncertainty to the overall analysis. 
The daily number of hours with humidity above 90% was extracted and 
transformed into input for the wheat blast model.

Global crop and disease simulations
For baseline and climatic change scenarios, inoculum was assumed to 
be uniformly present in all wheat growing areas at the beginning of each 
growing season, then according to the environmental conditions the 
GDM model simulates spore survival, infection and damage (Extended 
Data Fig. 2). All gridded crop modelling simulations were run in the CIM-
MYT high-performance computer cluster. Two global baseline simula-
tions (1980–2010) were performed, one with disease damage and another 
without disease damage, to calculate percentage loss due to wheat blast. 
Ten global climate change simulations were performed, considering all 
five GCMs (Extended Data Table 1) with disease damage and without 
disease damage to calculate percentage loss due to wheat blast.

Data processing
Locations with minimum temperature below 12 °C and those with 
maximum temperature above 37 °C for more than 105 consecutive days 
were not included as risk areas14,17,61. Areas with a total precipitation 
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lower than 50 mm for 105 consecutive days before the sowing date were 
also not included as risk areas as climate conditions were considered 
too dry for wheat blast development.

Raster files corresponding to each mega-environment cultivar, 
nitrogen level, sowing dates and GCMs were combined in one single ras-
ter, keeping separated irrigated and rainfed simulations. The irrigated 
and rainfed grain yields were weighted according to the proportion of 
their areas in the same grid cell7,42 using CIMMYT mega-environment 
cultivar distribution62 at 0.5 × 0.5° pixels. Simulated yields are based 
on representative varieties appropriate for each location and reflect 
the balance of irrigated and rainfed production7. While it is true that 
irrigation can create a humid environment that is conducive to the 
growth and spread of the MoT, it should be noted that this factor was 
not accounted for by the disease model.

For baseline, the yield reduction was expressed as percentage 
loss by

(1 − Yd
Ynd

) × 100, (10)

where Yd is yield with disease effect and Ynd is yield without disease 
effect.

For the climate change scenario, yield percentage loss for each of 
the five GCMs was estimated analogous to baseline. The final result was 
calculated using the average percentage loss result of the five GCMs.

The vulnerability was computed as the difference between grain 
yield with disease and without disease effect, where vulnerable areas 
exhibit >0.1% decrease in grain yield due to wheat blast63.

Wheat production was calculated by multiplying the average of 
30 years of wheat grain yield by the wheat area for each grid cell. The 
percentage reduction on global wheat production by mid-century was 
estimated by comparing the simulated baseline wheat production (529 
million tons) against the future projection (460 million tons), both 
under disease effect, assuming the uniform presence of the pathogen 
and the potential damage in global wheat growing areas, according to 
the equation below:

RGPd =
(BGPd − FGPd)

BGPd
× 100, (11)

where RGPd is potential reduction of global wheat production due to 
wheat blast, BGPd is baseline global production affected by wheat blast 
and FGPd is future global production affected by wheat blast.

The regions and continents plotted in Figs. 3 and 4 are Africa (all 
wheat producing countries), North America (Canada, the USA and 
Mexico), South America (Argentina, Bolivia, Brazil, Paraguay and Uru-
guay), Europe (all wheat producing countries), East Asia (China, Japan, 
North Korea and South Korea), South Asia (Bangladesh, Bhutan, India, 
Nepal and Pakistan) and Oceania (Australia and New Zealand).

Field empirical data on yield loss
Since the wheat blast emergence in Paraná, Brazil, in 1986 (ref. 3), the 
City of Londrina has reported the presence of the pathogen during both 
wheat growing season and off-season47. To assess model performance in 
predicting yield loss due to wheat blast, data were obtained from field 
trials in Londrina, Paraná, Brazil, from 2012, 2014 and 2015 during the 
wheat growing season28,64. In each experiment, susceptible varieties 
(MARFIM for 2012 and 2014 experiments and IPR Catuara TM for 2015 
experiment) were used under different fungicide regimes. Additionally, 
an untreated plot was included as a control in each trial. The experi-
ments were sown during the wheat growing season (between early 
March and early April). For 2014, two sowing dates were implemented, 
one sown in early March and another in mid-March, to measure the 
difference in wheat blast incidence between different planting dates. 
Randomized block design with four replications was conducted for 

each trial, and agronomic practices were performed according to the 
regional recommendations65. Once the crop reached maturity, the 
plots were harvested to obtain yield as well as the disease incidence, 
measured as proportion of diseased wheat heads. The incidence of 
wheat blast was measured in all plots, including those with fungicide 
applications. Note that even the most efficient fungicide is not able to 
completely prevent wheat blast infection6. It has been reported that 
the frequency of pathogen mutation has increased37, making it more 
difficult to assess wheat blast yield loss in field trials.

For simulating these experiments, hourly weather data for all three 
years were obtained from a weather station in Londrina, Paraná, Brazil 
(23° 21′ 36.0″ S, 51° 09′ 36.0″ W) of the Meteorological System of Paraná 
State (SIMEPAR) and soil profile data of the region were obtained from 
the Rural Development Institute of Parana (IAPAR). For both wheat 
varieties, the DSSAT genetic coefficients were estimated on the basis 
of the reported yield, planting and heading date. The anthesis date was 
estimated to be 5 days after the reported wheat heading date and was 
also used for cultivar calibration. Although all fungicide-treated plots 
reported losses due to wheat blast infection, for each experiment, the 
highest yield observed between the treated plots was used as a refer-
ence for calibrating the cultivars with no disease while the untreated 
plots were used for the diseased simulations. Since cultivar calibration, 
in general, depends heavily on the data inputs, the data affected by 
pests and diseases are not ideal as they will wrongly attribute lower 
yield potential, for example, to the genotype-specific coefficients of 
the cultivar when it was due to biotic stress. This undesirable effect on 
the cultivar parameters is likely to result in biased simulations under 
different conditions66. This method was used strictly to assess the yield 
loss predictions of the coupled model against empirical data.

The field trial data indicate an inverse correlation between yield 
and wheat blast incidence. The coupled model simulated grain yields 
for the untreated plots with an R2 of 0.86, root mean square error of 
95 kg ha−1 and Wilmott index of agreement of 0.69 (Extended Data  
Fig. 4). This indicates that the model could estimate accurately yield 
loss due to wheat blast infection. The field plots that received fungicide 
applications obtained greater grain yields compared with the untreated 
plots. The reported pathogen incidence within fungicide-treated plots 
ranged from 17.9% to 68.2% (refs. 28,64). The estimated yield loss was 
55.7% in 2012, 48.9% for crop sown in early March 2014, 74.7% for crop 
sown in mid-March 2014, and 68% in 2015. These yield loss percentages 
were within the yield loss observed on the field in the fungicide trials. 
Overall, this indicates a good model performance for estimating yield 
loss from wheat blast disease impact.

Regional wheat blast modelling evaluation
Hourly climate data collected by a weather station near Jashore, Bangla-
desh (23° 04′ 59.8″ N, 88° 55′ 49.9″ E), the closest location to the primary 
areas in which wheat blast was observed during the first outbreak of 
wheat blast in Bangladesh in 2016, from 2015 to 2020 were used to test if 
the coupled model was capable of adequately simulating epidemic and 
non-epidemic years during a wheat growing season (mid-November to 
early March). AgEra5 weather data were added from the end of 2010 
to 2015 to analyse if the antecedent years also had suitable conditions 
for wheat blast if the inoculum was present earlier. Additionally, using 
the historical data from 1980 to 2010 for Jashore, the in-season average 
temperature (°C) from 1980 to 2020 was analysed to see if temperature 
had overall increased during a 40-year timespan. The same approach 
was repeated for Mpika, Zambia using the baseline (1980–2010) and 
AgEra5 data (2010–2020) to analyse the crop growing season (late 
November to mid-March) in this region (Extended Data Fig. 5).

For Jashore in Bangladesh, the model captured a more conse-
quential loss during the 2015/2016 season, which corresponds to first 
recorded wheat blast outbreak in Bangladesh5. Additionally, the model 
adequately simulated the following years, which did not report large 
losses due to wheat blast, especially in 2017/2018, a non-epidemic 
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year13. A recent study used field data to show that the relationship 
between incidence and damage is not linear, what resulted in very 
low to zero damage when low incidence of wheat blast was correlated 
with grain yield damage67. The in-season average minimum tempera-
ture indicates a notable increase on the temperature compared with 
the previous years of 17.8 °C between 2015 and 2016 growing season, 
favouring wheat blast infection. Based on the re-analysis data, through-
out the 40-year period, the simulations indicate an in-season average 
minimum temperature that was constantly above 16.4 °C presenting 
environmental conditions suitable for wheat blast. For every year, from 
2010 to 2020, the results show simulated yield losses ranging from 
16.4% to 22.8%. Consequently, the region did not experience a recorded 
wheat blast outbreak earlier than the 2015/2016 season most probably 
due to the lack of MoT inoculum in the area.

The simulated potential wheat yield loss for the baseline was com-
pared with confirmed regional reports and research articles from 
Brazil, Bangladesh and Zambia. The model performance was assessed 
using a confusion matrix (Extended Data Fig. 6) to classify the results in 
four categories: (1) regions that were correctly classified as wheat blast 
vulnerable areas (true positives), (2) regions correctly classified as not 
vulnerable areas (true negatives), (3) regions that have not reported 
wheat blast occurrence but the model simulated damage (false posi-
tives or type I error) and (4) regions that were reported as wheat blast 
vulnerable areas but the model did not simulate damage (false nega-
tives or type II error). The unit of measurement considered was the 
occurrence or not of field infestation records at the state level (Brazil), 
major administrative divisions (Bangladesh) and provinces (Zambia). 
The sample size was defined in a binary category of not present, when 
there is no historical record of wheat blast, or present, when there was 
at least one wheat blast scouting report in any given year.

Four types of metrics were utilized as classification measures to 
better analyse the model performance: accuracy, precision, recall 
and F1 score. Accuracy measures the number of correct predictions 
using the formula

Accuracy = TP + TN
TP + TN + FP + FN , (12)

where TP is the true positive class value, TN is the true negative class 
value, FP is the false positive class value and FN is the false negative 
class value.

The precision measures the proportion of regions where wheat 
blast occurrence was predicted and that were correctly classified by

Precision = TP
TP + FP . (13)

Recall identifies the sensitivity of the model in identifying the 
regions that reported crop loss due wheat blast by

Recall = TP
TP + FN . (14)

F1 score uses the harmonic mean of precision and recall measuring 
the model accuracy by

F1 score = 2 × (
(Recall × Precision)
(Recall + Precision)

) . (15)

The model simulations have accuracy of 82%, precision of 83%, 
recall of 94% and F1 score of 88% (Extended Data Fig. 6).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data used and code generated by this study are available at https://
github.com/thiagoferreira53/GlobalWB (ref. 68). Source data are pro-
vided with this paper.

Code availability
The open source code of the Decision Support System for Agrotech-
nology Transfer (DSSAT) is available at https://github.com/DSSAT/
dssat-csm-os (ref. 69). The Mink system was designed for High Per-
formance Computing cluster, and the source code is available upon 
request (r.robertson@cgiar.org). The GDM coupled with DSSAT and 
the customized computer codes written in R language for data visuali-
zation and Python for data collection and processing are available at 
https://github.com/thiagoferreira53/GlobalWB (ref. 68).
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Extended Data Fig. 1 | The structure of the Decision Support System for 
Agrotechnology Transfer, DSSAT (A), and the Generic Disease Model, GDM 
(B). The red lines show how DSSAT and GDM models exchange information and 
simulate disease damage. The GDM model uses weather data from DSSAT and 
specific disease parameters as input to estimate the daily spore production and 
cloud density. It simulates the spores in the field and on the plant organs based 

on weather conditions, even when there is no infection. Whenever there are 
appropriate conditions for disease infection and host plant is present, the GDM 
model simulates in daily steps the disease life cycle and returns to the wheat 
model the respective damage at the cohort level affecting the plant growth state 
variables through the DSSAT Pest Damage module.

http://www.nature.com/natureclimatechange
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Extended Data Fig. 2 | Diagram of the Generic Disease Model (GDM). The 
diagram utilizes flowchart symbols to build the conceptual representation of 
the model. Start/End (a) indicates the beginning or end of the program. Process 
(b) represents the functions within the system. Data (c) represents data files and 
Input (d) represents specific input values that are used by the model. Decision 
(e) is a decision-making statement based on specific criteria. The GDM model 
uses a daily-step simulation and follows a specific execution order that matches 
the one used by the Nwheat model within the Crop System Modeling (CSM) of 
the DSSAT. Within the Seasonal Initialization, the model initializes the state and 
damage variables, reads the weather data (.WTH) for estimating wheat blast 
development based on the disease coefficient data file (.PST) and begin the 
seasonal simulation. According to the host presence and the daily crop growth, 
the model estimates the disease progress in the Rate Calculations section. Daily 

disease development is managed at cohort level12,13. Each cohort represents the 
crop development on a given day and was used as input for the disease model 
to estimate sporulation, lesion development and finally, the total wheat blast 
impact on the crop on the specific day. For wheat blast, fungal damage is only 
calculated after seed development stage. During the Rate Calculations, the 
model calculates the disease process by estimating spore growth within the 
field, plant and organ (cohorts). Environmental factors such as rain and UV light 
are considered as limiting factors on spore survivability. In Integration, spore 
dispersion is estimated according to the dispersal coefficients provided in the 
disease coefficient data file. The daily disease damage is estimated at this stage 
and communicated to the crop growth model through the specific damage 
rate variable that will reduce the development of the plant part affected by the 
disease.
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Extended Data Fig. 3 | Daily relative humidity (RH) from AgEra5 compared 
with the calculated daily relative humidity for four locations with 
contrasting climate. The line in red indicates the daily RH from AgERA5 while 
the blue line indicates the calculated daily RH. Daily relative humidity was 

calculated using daily maximum and minimum temperatures from the year 2000 
to 2010. This comparison was made in four different locations in contrasting 
regions of the globe (Londrina, Brazil; Obregon, Mexico; Jashore, Bangladesh; 
and Mpika, Zambia) were used for this analysis.
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Extended Data Fig. 4 | Model evaluation against observed field trial data. 
(a) simulated grain yield without (blue) and with (orange) wheat blast disease 
damage compared against three years of field collected data from Londrina, 
Paraná - Brazil. Circles represent the observed yield in fungicide treated plots 
(dark blue) and untreated plots (dark orange). Triangles represent the observed 
wheat blast incidence in fungicide treated plots (dark blue) and untreated plots 

(dark orange). All field plots, including those under fungicide applications, 
presented wheat blast incidence. Bottom identity plots comparing simulated 
untreated plot yield (b) and anthesis date (c) against empirical data (days after 
planting). Diamond symbol represents the field observed data for the wheat 
cultivars IPR Catuara TM (light red) and Marfim (light blue).

http://www.nature.com/natureclimatechange


Nature Climate Change

Article https://doi.org/10.1038/s41558-023-01902-2

Extended Data Fig. 5 | Comparison of simulated grain yield without (blue) 
and with (orange) wheat blast disease damage from 2010 to 2020 and 
recorded in-season weather data from 1980 to 2020 in Jashore, Bangladesh 
(left panels), and Mpika, Zambia (right panels). The top graphs (a and b) show 
simulated grain yield and percent damage for each season from 2010 to 2020. 

The bottom graphs (c and d) show crop in-season (from sowing to harvest) 
average maximum, minimum, and mean temperature from 1980 to 2020 using 
baseline weather data, AgERA5 and weather station data. The number above each 
set of two bars shows the additional simulated damage for the disease in %.

http://www.nature.com/natureclimatechange
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Extended Data Fig. 6 | Confusion matrix showing the model’s performance. 
This matrix contrasts model simulation areas with wheat blast and actual 
observed data from Brazil6,14,28,70–85, Bangladesh and Zambia6. Field infestation 
records at the state level (Brazil), major administrative divisions (Bangladesh), 
and provinces (Zambia) were considered in this comparison. The numbers in 
parenthesis represent occurrences in each of four categories: true positive (when 

the simulations show wheat blast damage and these were confirmed by national 
reports and research articles); true negative (when the simulations show no 
disease damage and no disease infection was ever reported); false positive (type 
I error, when model simulates disease damage but no disease infection was ever 
reported); and false negative (type II error, when the model simulates no disease 
damage but wheat blast damage was reported).

http://www.nature.com/natureclimatechange
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Extended Data Table 1 | Coefficients defined in the Generic Disease Model (GDM) for simulating wheat blast dynamics and 
infection

Model variables include DSPL, Daily Spore Production per Lesion; SPE, Spore Production Efficiency; SCF, Sporulation Crowding Factors; MSCD, Maximum Spore Clouds Density; ASR, 
Attainable Spore Rate; SPO2P, Spore Proportion that moves from Organ cloud to Plant cloud; SPP2F, Spore Proportion that moves from Plant cloud to Field cloud; CCFPO, Cloud 
compartmentalization (days till leaving the system - die/remove) (Field, Plant, Organ); II, Initial Inoculum; TFS, Temperature Favorability in the infection period (maximum, minimum and 
optimal); IE, Infection Efficiency; IPS, Initial Pustule Size; LP, Latent Period; IP, Infection Period; WT, Wetness Threshold; DRE, Dispersion Rain Effect where r stands for daily precipitation (mm); 
WF, Wetness Factor, where r stands for daily precipitation (mm); IGF, Invisible Growth Function, where r stands for daily precipitation (mm); VGF, Visible Growth Function, where r stands for 
daily precipitation (mm); and MRRS, Millimeters of rain needed to reduce spores cloud number.

http://www.nature.com/natureclimatechange
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Extended Data Table 2 | Global climate models (GCM) utilized for climate scenario simulations

The simulations were conducted using global daily weather data projections from the US Geophysical Fluid Dynamics Laboratory (GFDL-EM2M), The Institute Pierre Simon Laplace 
(IPSL-CM5A-LR), UK Hadley Centre for Climate Prediction and Research (HadGEM2-ES), Japan Agency for Marine-Earth Science and technology (MIROC-ESM-CHEM) and The Norwegian 
Climate Centre (NorESM1-M).

http://www.nature.com/natureclimatechange
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