Abstract
Rapid warming of high-latitude ecosystems is increasing microbial activity and accelerating the decomposition of permafrost soils. This proliferation of microbial energy could restructure high-latitude food webs and alter carbon cycling between above-ground and below-ground habitats. We used stable isotope analysis (δ13C) of amino acids to trace carbon flow through food webs exposed to warming and quantified changes in the assimilation of microbial carbon by Arctic tundra and boreal forest consumers. From 1990 to 2021, small mammals in boreal forests exhibited a significant reduction in the use of plant-based ‘green’ food webs and an increased use of microbially mediated ‘brown’ food webs, punctuated by a >30% rise in fungal carbon assimilation. Similarly, fungal carbon assimilation rose 27% in wolf spiders under experimental warming in Arctic tundra. These findings reveal a climate-mediated ‘browning’ of high-latitude food webs and point to an understudied pathway by which animals can impact carbon cycling under climate warming.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
All data56 used in this study are publicly archived at https://figshare.com/s/4eb07f4001aadc9a9a37, https://doi.org/10.6084/m9.figshare.22975145.
Code availability
All code56 used in this study72 is publicly archived at https://figshare.com/s/4eb07f4001aadc9a9a37, https://doi.org/10.6084/m9.figshare.22975145.
Change history
19 June 2024
A Correction to this paper has been published: https://doi.org/10.1038/s41558-024-02050-x
09 January 2024
A Correction to this paper has been published: https://doi.org/10.1038/s41558-024-01926-2
References
IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
Post, E. et al. The polar regions in a 2 °C warmer world. Sci. Adv. 5, eaaw9883 (2019).
Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).
Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
Schuur, E. A. G. et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, 556–559 (2009).
McCalley, C. K. et al. Methane dynamics regulated by microbial community response to permafrost thaw. Nature 514, 478–481 (2014).
Hicks Pries, C. E., Schuur, E. A. G., Natali, S. M. & Crummer, K. G. Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra. Nat. Clim. Change 6, 214–218 (2016).
Schuur, E. A. G. et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58, 701–714 (2008).
Jansson, J. K. & Taş, N. The microbial ecology of permafrost. Nat. Rev. Microbiol. 12, 414–425 (2014).
Guillemette, F., Bianchi, T. S. & Spencer, R. G. M. Old before your time: ancient carbon incorporation in contemporary aquatic foodwebs. Limnol. Oceanogr. 62, 1682–1700 (2017).
O’Donnell, J. A. et al. Permafrost hydrology drives the assimilation of old carbon by stream food webs in the Arctic. Ecosystems 23, 435–453 (2020).
Berner, L. T. & Goetz, S. J. Satellite observations document trends consistent with a boreal forest biome shift. Glob. Change Biol. 28, 3275–3292 (2022).
Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11, 4621 (2020).
Wirta, H. K. et al. Exposing the structure of an Arctic food web. Ecol. Evol. 5, 3842–3856 (2015).
Steffan, S. A. & Dharampal, P. S. Undead food-webs: integrating microbes into the food-chain. Food Webs 18, e00111 (2019).
Wolkovich, E. M. et al. Linking the green and brown worlds: the prevalence and effect of multichannel feeding in food webs. Ecology 95, 3376–3386 (2014).
Manlick, P. J., Cook, J. A. & Newsome, S. D. The coupling of green and brown food webs regulates trophic position in a montane mammal guild. Ecology 104, e3949 (2023).
Koltz, A. M., Asmus, A., Gough, L., Pressler, Y. & Moore, J. C. The detritus-based microbial–invertebrate food web contributes disproportionately to carbon and nitrogen cycling in the Arctic. Polar Biol. 41, 1531–1545 (2018).
Summerhayes, V. S. & Elton, C. S. Contributions to the ecology of Spitsbergen and Bear Island. J. Ecol. 11, 214–284 (1923).
Hodkinson, I. D. & Coulson, S. J. Are high Arctic terrestrial food chains really that simple? The Bear Island food web revisited. Oikos 106, 427–431 (2004).
Zou, K., Thébault, E., Lacroix, G. & Barot, S. Interactions between the green and brown food web determine ecosystem functioning. Funct. Ecol. 30, 1454–1465 (2016).
Schmitz, O. J. et al. Animating the carbon cycle. Ecosystems 17, 344–359 (2014).
Schmitz, O. J. & Leroux, S. J. Food webs and ecosystems: linking species interactions to the carbon cycle. Annu. Rev. Ecol. Evol. Syst. 51, 271–295 (2020).
Koltz, A. M., Gough, L. & McLaren, J. R. Herbivores in Arctic ecosystems: effects of climate change and implications for carbon and nutrient cycling. Ann. N. Y. Acad. Sci. 1516, 28–47 (2022).
Leroux, S. J., Wiersma, Y. F. & Vander Wal, E. Herbivore impacts on carbon cycling in boreal forests. Trends Ecol. Evol. 35, 1001–1010 (2020).
Olofsson, J., Tømmervik, H. & Callaghan, T. V. Vole and lemming activity observed from space. Nat. Clim. Change 2, 880–883 (2012).
Pastor, J., Naiman, R. J., Dewey, B. & McInnes, P. Moose, microbes, and the boreal forest. Bioscience 38, 770–777 (1988).
Wu, X., Duffy, J. E., Reich, P. B. & Sun, S. A brown-world cascade in the dung decomposer food web of an alpine meadow: effects of predator interactions and warming. Ecol. Monogr. 81, 313–328 (2011).
Schmitz, O. J., Buchkowski, R. W., Smith, J. R., Telthorst, M. & Rosenblatt, A. E. Predator community composition is linked to soil carbon retention across a human land use gradient. Ecology 98, 1256–1265 (2017).
Manlick, P. J. & Newsome, S. D. Stable isotope fingerprinting traces essential amino acid assimilation and multichannel feeding in a vertebrate consumer. Methods Ecol. Evol. 13, 1819–1830 (2022).
Larsen, T., Taylor, D. L., Leigh, M. B. & O’Brien, D. M. Stable isotope fingerprinting: a novel method for identifying plant, fungal, or bacterial origins of amino acids. Ecology 90, 3526–3535 (2009).
Larsen, T. et al. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting. PLoS ONE 8, e73441 (2013).
Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton Univ. Press, 2002).
Wendler, G. & Shulski, M. A century of climate change for Fairbanks, Alaska. Arctic 62, 295–300 (2009).
Grodzinksi, W. Energy flow through populations of small mammals in Hie Alaskan Taiga Forest. Acta Theriol. XVI, 231–275 (1971).
Rexstad, E. & Kielland, K. In Alaska’s Changing Boreal Forest (eds Chapin, F. S. III et al.) 121–132 (Oxford Univ. Press, 2006); https://doi.org/10.1093/oso/9780195154313.003.0013
Koltz, A. M., Classen, A. T. & Wright, J. P. Warming reverses top-down effects of predators on belowground ecosystem function in Arctic tundra. Proc. Natl Acad. Sci. USA 115, E7541–E7549 (2018).
Koltz, A. M. & Wright, J. P. Impacts of female body size on cannibalism and juvenile abundance in a dominant Arctic spider. J. Anim. Ecol. 89, 1788–1798 (2020).
Boonstra, R. & Krebs, C. J. Population dynamics of red-backed voles (Myodes) in North America. Oecologia 168, 601–620 (2012).
Sistla, S. A. et al. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497, 615–617 (2013).
Moore, J. C. & Hunt, H. W. Resource compartmentation and the stability of real ecosystems. Nature 333, 261–263 (1988).
Potapov, A. M. et al. Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biol. Rev. 97, 1057–1117 (2022).
Hättenschwiler, S., Tiunov, A. V. & Scheu, S. Biodiversity and litter decomposition in terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 36, 191–218 (2005).
Waldrop, M. P. et al. Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils. Glob. Change Biol. 16, 2543–2554 (2010).
Talbot, J. M., Allison, S. D. & Treseder, K. K. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct. Ecol. 22, 955–963 (2008).
Pokarzhevskii, A. D., Van Straalen, N. M., Zaboev, D. P. & Zaitsev, A. S. Microbial links and element flows in nested detrital food-webs. Pedobiologia 47, 213–224 (2003).
Mizukami, N. et al. New projections of 21st century climate and hydrology for Alaska and Hawaiʻi. Clim. Serv. 27, 100312 (2022).
Krebs, C. J., Carrier, P., Boutin, S., Boonstra, R. & Hofer, E. Mushroom crops in relation to weather in the southwestern Yukon. Botany 86, 1497–1502 (2008).
Thormann, M. N., Bayley, S. I. & Currah, R. S. Microcosm tests of the effects of temperature and microbial species number on the decomposition of Carex aquatilis and Sphagnum fuscum litter from southern boreal peatlands. Can. J. Microbiol. 50, 793–802 (2004).
Allison, S. D. & Treseder, K. K. Climate change feedbacks to microbial decomposition in boreal soils. Fungal Ecol. 4, 362–374 (2011).
Thakur, M. P. Climate warming and trophic mismatches in terrestrial ecosystems: the green–brown imbalance hypothesis. Biol. Lett. 16, 20190770 (2020).
Bartley, T. J. et al. Food web rewiring in a changing world. Nat. Ecol. Evol. 3, 345–354 (2019).
Hobbie, E. A. et al. Stable Isotopes and Radiocarbon Assess Variable Importance of Plants and Fungi in Diets of Arctic Ground Squirrels. Arctic, Antarct. Alp. Res. 49, 487–500 (2017).
Estop-Aragonés, C. et al. Assessing the potential for mobilization of old soil carbon after permafrost thaw: a synthesis of 14C measurements from the northern permafrost region. Glob. Biogeochem. Cycles 34, e2020GB006672 (2020).
Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).
Manlick, P. J., Perryman, N. L., Koltz, A. M., Cook, J. A. & Newsome, S. D. Data from: ‘Climate warming restructures food webs and carbon flow in high-latitude ecosystems’. Figshare https://doi.org/10.6084/m9.figshare.22975145 (2023).
Yates, T. L., Jones, C. & Cook, J. A. In Measuring and Monitoring Biological Diversity: Standard Methods for Mammals (eds Wilson, E. et al.) 265–273 (Smithsonian Institution Press, 1996).
Galbreath, K. E. et al. Building an integrated infrastructure for exploring biodiversity: field collections and archives of mammals and parasites. J. Mammal. 100, 382–393 (2019).
Sikes, R. S. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mammal. 97, 663–688 (2016).
Dalerum, F. & Angerbjörn, A. Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia 144, 647–658 (2005).
Silfer, J. A., Engel, M. H., Macko, S. A. & Jumeau, E. J. Stable carbon isotope analysis of amino acid enantiomers by conventional isotope ratio mass spectrometry and combined gas chromatography/isotope ratio mass spectrometry. Anal. Chem. 63, 370–374 (1991).
O’Brien, D. M., Fogel, M. L. & Boggs, C. L. Renewable and nonrenewable resources: amino acid turnover and allocation to reproduction in Lepidoptera. Proc. Natl Acad. Sci. USA 99, 4413–4418 (2002).
Besser, A. C., Elliott Smith, E. A. & Newsome, S. D. Assessing the potential of amino acid δ13C and δ15N analysis in terrestrial and freshwater ecosystems. J. Ecol. 110, 935–950 (2022).
Dombrosky, J. A ~1000-year 13C Suess correction model for the study of past ecosystems. Holocene 30, 474–478 (2020).
Ripley, B. et al. Package ‘mass’ v.7.3-60 (2013).
Oksanen, J. et al. Package ‘vegan’. Community ecology package v.2.9 (2013).
Parnell, A. C. & Inger, R. Simmr: a stable isotope mixing model. R package v.0.3 (2016).
Hopkins, J. B., Koch, P. L., Ferguson, J. M. & Kalinowski, S. T. The changing anthropogenic diets of American black bears over the past century in Yosemite National Park. Front. Ecol. Environ. 12, 107–114 (2014).
Manlick, P. J., Petersen, S. M., Moriarty, K. M. & Pauli, J. N. Stable isotopes reveal limited Eltonian niche conservatism across carnivore populations. Funct. Ecol. 33, 335–345 (2019).
Reimer, R. W. & Reimer, P. J. CALIBomb (2022).
Hua, Q. et al. Atmospheric radiocarbon for the period 1950–2019. Radiocarbon 64, 723–745 (2022).
Spiess, A. propagate: Propagation of Uncertainty (2018).
Acknowledgements
We thank A. Martinez for laboratory assistance and L. Berner for reviewing an early version of this manuscript. P.J.M. was supported by NSF (DBI- 2010712) and the USFS Pacific Northwest Research Station, with in-kind support from UNM-CSI and UNM-MSB. A.M.K. was supported by NSF (DEB-1210704) and the National Geographic Committee for Research and Exploration.
Author information
Authors and Affiliations
Contributions
P.J.M., N.L.P. and S.D.N. conceived of the study, and all authors collected data. P.J.M. and N.L.P. conducted laboratory and statistical analyses, and P.J.M. wrote the first draft of the manuscript. All authors contributed substantially to revisions.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Climate Change thanks Emily Arsenault, Matthias Pilecky and Ryan Stephens for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Fig. 1, Tables 1–3 and Protocols 1–4.
Rights and permissions
About this article
Cite this article
Manlick, P.J., Perryman, N.L., Koltz, A.M. et al. Climate warming restructures food webs and carbon flow in high-latitude ecosystems. Nat. Clim. Chang. 14, 184–189 (2024). https://doi.org/10.1038/s41558-023-01893-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41558-023-01893-0