Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Towards scenario representation of adaptive capacity for global climate change assessments


Climate change adaptation needs, as well as the capacity to adapt, are unequally distributed around the world. Global models that assess the impacts of climate change and policy options to reduce them most often do not elaborately represent adaptation. When they do, they rarely account for heterogeneity in societies’ adaptive capacities and their temporal dynamics. Here we propose ways to quantify adaptive capacity within the framework of Shared Socioeconomic Pathways, a scenario set widely used by climate impact and integrated assessment models. A large set of indicators spanning different socioeconomic dimensions can be used to assess adaptive capacity and deliver adaptation-relevant, scenario-resolved information that is crucial for more realistic assessment of whether and how climate risks can be reduced by adaptation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Typical characterization of the risk of climate change impacts versus socioeconomic characterization of adaptive capacity.
Fig. 2: Stepwise approach to assessing adaptive capacity.
Fig. 3: Conceptual connections between adaptive capacity, model integration and risk assessments.

Data availability

The data listed in Table 1 are available in a certified repository88 and are open access. The data can also be interactively accessed through the Socio-economic and Political Data Explorer at


  1. IPCC: Glossary. In Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) 2897–2930 (Cambridge Univ. Press, 2022).

  2. Berrang-Ford, L. et al. A systematic global stocktake of evidence on human adaptation to climate change. Nat. Clim. Change 11, 989–1000 (2021).

    Article  Google Scholar 

  3. Nalau, J. & Verrall, B. Mapping the evolution and current trends in climate change adaptation science. Clim. Risk Manage. 32, 100290 (2021).

    Article  Google Scholar 

  4. Sietsma, A. J., Ford, J. D., Callaghan, M. W. & Minx, J. C. Progress in climate change adaptation research. Environ. Res. Lett. 16, 054038 (2021).

    Article  Google Scholar 

  5. New, M. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) 2411–2538 (Cambridge Univ. Press, 2022).

  6. Adaptation Gap Report 2021: The Gathering Storm—Adapting to Climate Change in a Post-pandemic World (United Nations Environment Programme, 2021).

  7. O’Neill, B. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) 2411–2538 (Cambridge Univ. Press, 2022).

  8. Holman, I. P., Brown, C., Carter, T. R., Harrison, P. A. & Rounsevell, M. Improving the representation of adaptation in climate change impact models. Reg. Environ. Change 19, 711–721 (2019).

    Article  Google Scholar 

  9. Füssel, H. M. Modeling impacts and adaptation in global IAMs. WIREs Clim. Change 1, 288–303 (2010).

    Article  Google Scholar 

  10. Minoli, S. et al. Global response patterns of major rainfed crops to adaptation by maintaining current growing periods and irrigation. Earths Future 7, 1464–1480 (2019).

  11. Harrison, P. A. et al. Combining qualitative and quantitative understanding for exploring cross-sectoral climate change impacts, adaptation and vulnerability in Europe. Reg. Environ. Change 13, 761–780 (2013).

    Article  Google Scholar 

  12. Van Maanen, N. et al. Representation of adaptation in quantitative climate assessments. Nat. Clim. Change 13, 309–311 (2023).

    Article  Google Scholar 

  13. O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).

    Article  Google Scholar 

  14. O’Neill, B. C. et al. Achievements and needs for the climate change scenario framework. Nat. Clim. Change 10, 1074–1084 (2020).

    Article  Google Scholar 

  15. Green, C. et al. Shared Socioeconomic Pathways (SSPs) Literature Database, Version 2, 2020-2021 (Preliminary Release) (NASA Socioeconomic Data and Applications Center (SEDAC), accessed 25 March 2023);

  16. Harrison, P. A., Holman, I. P. & Berry, P. M. Assessing cross-sectoral climate change impacts, vulnerability and adaptation: an introduction to the CLIMSAVE project. Climatic Change 128, 153–167 (2015).

    Article  Google Scholar 

  17. Bresch, D. N. & Aznar-Siguan, G. CLIMADA v1.4.1: towards a globally consistent adaptation options appraisal tool. Geosci. Model Dev. 14, 351–363 (2021).

    Article  Google Scholar 

  18. Piontek, F. et al. Integrated perspective on translating biophysical to economic impacts of climate change. Nat. Clim. Change 11, 563–572 (2021).

    Article  Google Scholar 

  19. Popp, A. et al. Land-use protection for climate change mitigation. Nat. Clim. Change 4, 1095–1098 (2014).

    Article  CAS  Google Scholar 

  20. Havlík, P. et al. Climate change mitigation through livestock system transitions. Proc. Natl Acad. Sci. USA 111, 3709–3714 (2014).

    Article  Google Scholar 

  21. Preston, B. L., Dow, K. & Berkhout, F. The climate adaptation frontier. Sustainability 5, 1011–1035 (2013).

    Article  Google Scholar 

  22. Haasnoot, M., Kwakkel, J. H., Walker, W. E. & ter Maat, J. Dynamic adaptive policy pathways: a method for crafting robust decisions for a deeply uncertain world. Glob. Environ. Change 23, 485–498 (2013).

    Article  Google Scholar 

  23. IPCC: Summary for Policymakers. In Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2019).

  24. IPCC: Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner. H.-O. et al.) (Cambridge Univ. Press, 2022).

  25. IPCC: Summary for Policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  26. Schewe, J. et al. State-of-the-art global models underestimate impacts from climate extremes. Nat. Commun. 10, 1005 (2019).

    Article  Google Scholar 

  27. Juhola, S., Heikkinen, M., Pietilä, T., Groundstroem, F. & Käyhkö, J. Connecting climate justice and adaptation planning: an adaptation justice index. Environ. Sci. Policy 136, 609–619 (2022).

    Article  Google Scholar 

  28. de Bruin, K., Dellink, R., Agrawala, S. & Dellink, R. Economic Aspects of Adaptation to Climate Change: Integrated Assessment Modelling of Adaptation Costs and Benefits OECD Environment Working Papers 22, 36–38 (OECD, 2009).

  29. Patt, A. G. et al. Adaptation in integrated assessment modeling: where do we stand? Climatic Change 99, 383–402 (2010).

    Article  Google Scholar 

  30. Ara Begum, R. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) 121–196 (Cambridge Univ. Press, 2022).

  31. Nussbaum, M. & Sen, A. The Quality of Life (Clarendon, 1993).

  32. Chen, C. et al. University of Notre Dame Global Adaptation Index: Country Index Technical Report (ND-GAIN, 2015).

  33. Edmonds, H. K., Lovell, J. E. & Lovell, C. A. K. A new composite climate change vulnerability index. Ecol. Indic. 117, 106529 (2020).

  34. Lemos, M. C. et al. in Climate Science for Serving Society (eds Asrar, G. R. & Hurrell, J. W.) 437–457 (Springer, 2013);

  35. Yohe, G. & Tol, R. S. J. Indicators for social and economic coping capacity—moving toward a working definition of adaptive capacity. Glob. Environ. Change 12, 25–40 (2002).

    Article  Google Scholar 

  36. Rohat, G. et al. Assessing urban heat-related adaptation strategies under multiple futures for a major U.S. city. Climatic Change 164, 1–20 (2021).

  37. Carter, T. R. et al. Characterising vulnerability of the elderly to climate change in the Nordic region. Reg. Environ. Change 16, 43–58 (2016).

    Article  Google Scholar 

  38. Andrijevic, M., Byers, E., Mastrucci, A., Smits, J. & Fuss, S. Future cooling gap in Shared Socioeconomic Pathways. Environ. Res. Lett. 16, 094053 (2021).

    Article  Google Scholar 

  39. Siders, A. R. Adaptive capacity to climate change: a synthesis of concepts, methods, and findings in a fragmented field. WIREs Clim. Change 10, e573 (2019).

    Article  Google Scholar 

  40. Füssel, H. M. How inequitable is the global distribution of responsibility, capability, and vulnerability to climate change: a comprehensive indicator-based assessment. Glob. Environ. Change 20, 597–611 (2010).

    Article  Google Scholar 

  41. Thomas, A. et al. Global evidence of constraints and limits to human adaptation. Reg. Environ. Change (2021).

  42. Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  43. Moss, R. H., Brenkert, A. L. & Malone, E. L. Vulnerability to Climate Change: A Quantitative Approach (Pacific Northwest National Laboratory, 2001).

  44. Malone, E. L. & Brenkert, A. L. Uncertainty in resilience to climate change in India and Indian states. Climatic Change 91, 451–476 (2008).

    Article  Google Scholar 

  45. Rohat, G. Projecting drivers of human vulnerability under the Shared Socioeconomic Pathways. Int. J. Environ. Res. Public Health 15, 554 (2018).

    Article  Google Scholar 

  46. Van Maanen, N. et al. Accounting for socioeconomic constraints in sustainable irrigation expansion assessments. Environ. Res. Lett. 17, 075004 (2022).

    Article  Google Scholar 

  47. Mastrucci, A., Byers, E., Pachauri, S. & Rao, N. D. Improving the SDG energy poverty targets: residential cooling needs in the Global South. Energy Build. 186, 405–415 (2019).

    Article  Google Scholar 

  48. Higginbottom, T. P., Adhikari, R., Dimova, R., Redicker, S. & Foster, T. Performance of large-scale irrigation projects in sub-Saharan Africa. Nat. Sustain. 4, 501–508 (2021).

    Article  Google Scholar 

  49. Creutzig, F. et al. in Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) Ch. 5 (Cambridge Univ. Press, 2021).

  50. Lissner, T. K., Reusser, D. E., Lakes, T. & Kropp, J. P. A systematic approach to assess human wellbeing demonstrated for impacts of climate change. Change Adapt. Socioecol. Syst. 1, 98–110 (2015).

  51. Rao, N. D. & Min, J. Decent living standards: material prerequisites for human wellbeing. Soc. Indic. Res. 138, 225–244 (2018).

    Article  Google Scholar 

  52. Callaghan, M. et al. Machine-learning-based evidence and attribution mapping of 100,000 climate impact studies. Nat. Clim. Change 11, 966–972 (2021).

    Article  Google Scholar 

  53. O’Neill, B. C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change 122, 387–400 (2014).

    Article  Google Scholar 

  54. Westerhoff, L., Keskitalo, E. C. H. & Juhola, S. Capacities across scales: local to national adaptation policy in four European countries. Clim. Policy 11, 1071–1085 (2011).

    Article  Google Scholar 

  55. Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).

    Article  Google Scholar 

  56. Belmin, C., Hoffmann, R., Elkasabi, M. & Pichler, P. P. LivWell: a sub-national dataset on the living conditions of women and their well-being for 52 countries. Sci. Data 9, 719 (2022).

    Article  Google Scholar 

  57. Smits, J. & Permanyer, I. The Subnational Human Development Database. Sci. Data 6, 190038 (2019).

    Article  Google Scholar 

  58. Kummu, M., Taka, M. & Guillaume, J. H. A. Gridded global datasets for gross domestic product and human development index over 1990–2015. Sci. Data 5, 180004 (2018).

    Article  Google Scholar 

  59. Najafi, M. R., Moradkhani, H. & Jung, I. W. Assessing the uncertainties of hydrologic model selection in climate change impact studies. Hydrol. Process. 25, 2814–2826 (2011).

    Article  Google Scholar 

  60. Terando, A., Keller, K. & Easterling, W. E. Probabilistic projections of agro-climate indices in North America. J. Geophys. Res. Atmos. 117, D8 (2012).

  61. Kontis, V. et al. Future life expectancy in 35 industrialised countries: projections with a Bayesian model ensemble. Lancet 389, 1323–1335 (2017).

    Article  Google Scholar 

  62. Crespo Cuaresma, J. et al. Economic development and forest cover: evidence from satellite data. Sci. Rep. 7, 40678 (2017).

    Article  CAS  Google Scholar 

  63. Harrison, P. A., Dunford, R. W., Holman, I. P. & Rounsevell, M. D. A. Climate change impact modelling needs to include cross-sectoral interactions. Nat. Clim. Change 6, 885–890 (2016).

    Article  Google Scholar 

  64. Peace, J. & Weyant, J. Insights Not Numbers: The Appropriate Use of Economic Models (Pew Center on Global Climate Change, 2008).

  65. Wilson, C. et al. Evaluating process-based integrated assessment models of climate change mitigation. Climatic Change 166, 1–22 (2021).

  66. Hegre, H. et al. Forecasting civil conflict along the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 054002 (2016).

    Article  Google Scholar 

  67. Buhaug, H. & von Uexkull, N. Vicious circles: violence, vulnerability, and climate change. Annu. Rev. Environ. Resour. 46, 545–568 (2021).

    Article  Google Scholar 

  68. Petrova, K., Olafsdottir, G., Hegre, H. & Gilmore, E. A. The ‘conflict trap’ reduces economic growth in the Shared Socioeconomic Pathways. Environ. Res. Lett. 18, 024028 (2023).

    Article  Google Scholar 

  69. Birkmann, J. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) 1171–1274 (Cambridge Univ. Press, 2022).

  70. Pelling, M. & High, C. Understanding adaptation: what can social capital offer assessments of adaptive capacity? Glob. Environ. Change 15, 308–319 (2005).

    Article  Google Scholar 

  71. Crespo Cuaresma, J. Income projections for climate change research: a framework based on human capital dynamics. Glob. Environ. Change 42, 226–236 (2017).

    Article  Google Scholar 

  72. Dellink, R., Chateau, J., Lanzi, E. & Magné, B. Long-term economic growth projections in the Shared Socioeconomic Pathways. Glob. Environ. Change 42, 200–214 (2017).

    Article  Google Scholar 

  73. Koch, J. & Leimbach, M. Update of SSP GDP projections: capturing recent changes in national accounting, PPP conversion and COVID-19 impacts. Ecol. Econ. 206, 107751 (2023).

  74. Leimbach, M., Kriegler, E., Roming, N. & Schwanitz, J. Future growth patterns of world regions—a GDP scenario approach. Glob. Environ. Change 42, 215–225 (2017).

    Article  Google Scholar 

  75. Leimbach, M., Marcolino, M. & Koch, J. Structural change scenarios within the SSP framework. Futures 150, 103156 (2023).

  76. Crespo Cuaresma, J. et al. Will the Sustainable Development Goals be fulfilled? Assessing present and future global poverty. Palgrave Commun. 4, 1 (2018).

  77. Rao, N. D., Sauer, P., Gidden, M. & Riahi, K. Income inequality projections for the Shared Socioeconomic Pathways (SSPs). Futures 105, 27–39 (2019).

    Article  Google Scholar 

  78. Jiang, L. & O’Neill, B. C. Global urbanization projections for the Shared Socioeconomic Pathways. Glob. Environ. Change 42, 193–199 (2017).

    Article  Google Scholar 

  79. Chen, S. et al. Updating global urbanization projections under the Shared Socioeconomic Pathways. Sci. Data 9, 137 (2022).

    Article  Google Scholar 

  80. Benveniste, H., Cuaresma, J. C., Gidden, M. & Muttarak, R. Tracing international migration in projections of income and inequality across the Shared Socioeconomic Pathways. Climatic Change 166, 3–4 (2021).

  81. Andrijevic, M., Crespo Cuaresma, J., Muttarak, R. & Schleussner, C. F. Governance in socioeconomic pathways and its role for future adaptive capacity. Nat. Sustain. 3, 35–41 (2020).

    Article  Google Scholar 

  82. Soergel, B. et al. A sustainable development pathway for climate action within the UN 2030 Agenda. Nat. Clim. Change 11, 656–664 (2021).

    Article  Google Scholar 

  83. KC, S. & Lutz, W. The human core of the Shared Socioeconomic Pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).

    Article  Google Scholar 

  84. Crespo Cuaresma, J. & Lutz, W. The demography of human development and climate change vulnerability: a projection exercise. Vienna Yearb. Popul. Res. 13, 241–261 (2015).

  85. Andrijevic, M., Crespo Cuaresma, J., Lissner, T., Thomas, A. & Schleussner, C. F. Overcoming gender inequality for climate resilient development. Nat. Commun. 11, 6261 (2020).

    Article  CAS  Google Scholar 

  86. Schleussner, C. F. et al. Pathways of climate resilience over the 21st century. Environ. Res. Lett. (2021).

  87. Isaac, M. & van Vuuren, D. P. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy 37, 507–521 (2009).

    Article  Google Scholar 

  88. Andrijevic, M. Indicators listed in the manuscript ‘Towards scenario representation of adaptive capacity in global climate change assessments’. Zenodo (2023).

Download references


We thank O. Serdeczny for useful comments on the earlier versions of this work and J. Kikstra, the reigning IIASA table tennis champion, for a helpful exchange on the revised version. R.M. acknowledges support from the ERC Consolidator Grant under grant agreement number 101002973 (POPCLIMA). N.v.M. and E.T. acknowledge support from the German Federal Ministry of Education and Research under grant agreement number 01LN1711A (EmBARK). C.-F.S. acknowledges funding from the European Union’s Horizon 2020 Research and Innovation programmes under grant agreement number 101003687 (PROVIDE).

Author information

Authors and Affiliations



M.A. conceived the paper and created the figures with contributions from E.B. and C.-F.S. M.A., C.-F.S., J.C.C., T.L., R.M., K.R., E.T., A.T. and N.v.M. contributed to writing the paper. M.A. wrote the revisions with inputs from E.B. and C.-F.S.

Corresponding author

Correspondence to Marina Andrijevic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Richard Moss and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Data sources for the indicators featured in Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrijevic, M., Schleussner, CF., Crespo Cuaresma, J. et al. Towards scenario representation of adaptive capacity for global climate change assessments. Nat. Clim. Chang. 13, 778–787 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing