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Co-benefits of carbon neutrality in 
enhancing and stabilizing solar and  
wind energy

Yadong Lei1, Zhili Wang    1 , Deying Wang1, Xiaoye Zhang1, Huizheng Che    1, 
Xu Yue    2, Chenguang Tian2, Junting Zhong1, Lifeng Guo1, Lei Li1, Hao Zhou3, 
Lin Liu1 & Yangyang Xu    4

Solar photovoltaic (PV) and wind energy provide carbon-free renewable 
energy to reach ambitious global carbon-neutrality goals, but their yields 
are in turn influenced by future climate change. Here, using a bias-corrected 
large ensemble of multi-model simulations under an envisioned 
post-pandemic green recovery, we find a general enhancement in solar 
PV over global land regions, especially in Asia, relative to the well-studied 
baseline scenario with modest climate change mitigation. Our results also 
show a notable west-to-east interhemispheric shift of wind energy by the 
mid-twenty-first century, under the two global carbon-neutral scenarios. 
Both solar PV and wind energy are projected to have a greater temporal 
stability in most land regions due to deep decarbonization. The co-benefits 
in enhancing and stabilizing renewable energy sources demonstrate a 
beneficial feedback in achieving global carbon neutrality and highlight Asian 
regions as a likely hotspot for renewable resources in future decades.

Anthropogenic climate warming has led to more frequent climate 
extremes1–4 and pollution episodes5–7, which pose a serious threat to 
economy, ecological environment and human health8,9. To limit global 
warming to well below 2 °C above pre-industrial levels, global carbon 
neutrality must be achieved by the second half of the twenty-first cen-
tury10. Achieving global carbon neutrality requires >50% reductions in 
anthropogenic carbon dioxide (CO2) emission by 203011,12, driven by 
an accelerated transition to renewable energy.

Solar photovoltaic (PV) and wind energy are major drivers of clean 
energy transition; however, unlike nuclear or geothermal, their power 
outputs are sensitive to meteorological conditions13–16. Sunlight cap-
tured by a PV module is influenced by solar altitude angle and sky condi-
tion15. For example, clouds and aerosols can decrease sunlight reaching 
the ground by scattering and absorbing solar radiation, leading to 

smaller solar power yield17. In addition, high ambient temperature also 
reduces the conversion efficiency of solar panels18. The wind power 
yield is dominated by wind speed at the hub height (100–150 m) of wind 
turbines19. Generally, neither smaller nor larger wind speed weathers 
are optimal to wind energy generation, because wind turbines (for 
example, Sinovel SL3000) typically start generating power at 3 m s−1, 
but need to shut down at 25 m s−1 for safety concerns20.

Therefore, climate change projections provide key information 
for long-term planning and investment of solar and wind energy infra-
structures. Many studies have assessed global or regional solar PV 
and wind energy, typically under the high-emission scenarios of the 
IPCC’s Representative Concentration Pathways (RCPs) and Shared 
Socioeconomic Pathways (SSPs)20–26. However, very few studies have 
examined solar PV and wind energy under the low-warming scenarios 

Received: 27 October 2022

Accepted: 10 May 2023

Published online: 5 June 2023

 Check for updates

1State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 
China. 2Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric 
Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 
Nanjing, China. 3Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China. 4Department of 
Atmospheric Sciences, Texas A&M University, College Station, TX, USA.  e-mail: wangzl@cma.gov.cn

http://www.nature.com/natureclimatechange
https://doi.org/10.1038/s41558-023-01692-7
http://orcid.org/0000-0002-4392-3230
http://orcid.org/0000-0002-9458-3387
http://orcid.org/0000-0002-8861-8192
http://orcid.org/0000-0001-7173-7761
http://crossmark.crossref.org/dialog/?doi=10.1038/s41558-023-01692-7&domain=pdf
mailto:wangzl@cma.gov.cn


Nature Climate Change | Volume 13 | July 2023 | 693–700 694

Article https://doi.org/10.1038/s41558-023-01692-7

Changes in solar PV
Solar PV is an important renewable supply to meet the ambitious climate 
change mitigation target. Here, we assess the solar PV potential (PVPOT) 
under different climate change scenarios (Fig. 1 and Supplementary Fig. 1).  
The ensemble mean simulation projects that the solar PVPOT increases 
by ~4% in eastern China and ~3% in the eastern United States and west-
ern Europe during 2040–2049 under SSP2-4.5 relative to the historical 
period (Fig. 1a). However, a large decline by approximately 4% is found 
over India, and also slight decrease but with high inter-model agreement 
over southern South America, central Asia, Australia, Africa and the 
western United States. Although this ensemble consists of four models, 
the spatial pattern of changes is consistent with other multi-model 
studies on SSP2-4.5 or higher-emission scenarios using the models 
from the Coupled Model Intercomparison Project Phase 6 (CMIP6)36,37.

The solar PVPOT in the mid-twenty-first century can be strongly 
influenced by global carbon-neutral policies (Fig. 1b,c). In eastern 
China, the increase in solar PVPOT during 2040–2049 in SSP2-4.5 rela-
tive to the historical period is projected to be further enhanced by 
another 2% and 3% in the moderate (MOD) and strong (STR) scenarios, 
respectively. In India and western Africa, the projected decrease in solar 
PVPOT during 2040–2049 in SSP2-4.5 can be offset back to the historical 
level in the STR scenario (IND and WAF in Fig. 1d). In the eastern United 
States and western Europe, there is only weak enhancement of solar 
PVPOT during 2040–2049 in the carbon-neutral scenarios compared 
with SSP2-4.5, but with high inter-model agreement (EUS and WEU in 
Fig. 1d). These results highlight a major co-benefit of carbon-neutral 
policies by enhancing solar PVPOT in the mid-twenty-first century over 
global land regions except for the Amazon, which is also clear when 
considering the resource quality of solar energy (Extended Data Fig. 1 
showing absolute change).

(notable exceptions being refs. 24,27 on scenarios reaching net zero 
after 2080). Such a lack of analysis in the past was probably due to the 
general perception that low-emission pathways are difficult to achieve 
given existing climate policies and a lack of coordinated global climate 
model runs. The COVID-19 pandemic recovery may have provided a 
vital opportunity to fast-track climate change mitigation28, and indeed 
more than 120 nations have recently pledged to reach net zero carbon 
emissions by the mid-twenty-first century (2040–2060)29–31.

Recent studies show that deep CO2 emission cuts (along with 
aerosol decline from co-emission sources) can have major impacts on 
future climate, such as mitigated climate extremes12,32–34. Therefore, 
a systematic assessment of both solar PV and wind energy under a 
carbon-neutral climate is needed to understand how they change from 
now and how they differ from other high-warming scenarios studies. 
Here, we present the first study, to our best knowledge, of quantifying 
solar PV and wind energy under deep mitigation scenarios, by leverag-
ing a newly available large multi-model ensemble projection generated 
at the wake of the COVID-19 green recovery. To explore the potential 
impacts of COVID-19 lockdowns in 2020 and post-pandemic green 
recovery, a new model intercomparison project (CovidMIP) was con-
ducted by six Earth system model (ESM) modelling groups35. Assuming 
a fast renewable transition during the post-pandemic recovery, two 
emission scenarios reaching global carbon neutrality by 2050 and 2060 
are designed in CovidMIP, which are contrasted with a well-studied 
weak mitigation scenario of SSP2-4.5, without reaching net zero before 
2100. Our assessment of global solar PV and wind energy under the 
deep mitigation pathways, using a bias-corrected large ensemble of 
simulations with particular attention on the temporal intermittency of 
energy availability, will provide valuable support for decision-making 
in renewable energy investments across regions and sources.
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Fig. 1 | Changes of solar PVPOT. a, The relative changes of annual mean solar PVPOT 
(%) during 2040–2049 under SSP2-4.5 (S245) relative to the historical period. 
b,c, The relative changes of annual mean solar PVPOT during 2040–2049 under 
the moderate (MOD; b) and strong (STR; c) mitigation scenarios relative to 
S245. Hatched regions have changes with high inter-model agreement defined 
as at least three of the four models agreeing on the sign of changes. d, Regional 
mean relative changes of annual solar PVPOT during 2040–2049 under S245 
(red bars), MOD (blue bars) and STR (green bars) scenarios, all relative to the 

historical period. The markers are individual model values and the bars (black 
error bars) represent the mean values (one standard deviation) of four climate 
models. The hatched red (blue and green) bars have changes with high inter-
model agreement during 2040–2049 under S245 (MOD and STR) relative to the 
historical period (S245). The six sub-regions with large emissions are marked with 
black boxes: eastern United States (EUS), southern South America (SSA), western 
Europe (WEU), western Africa (WAF), India (IND) and eastern China (ECH) 
(Supplementary Table 2).

http://www.nature.com/natureclimatechange


Nature Climate Change | Volume 13 | July 2023 | 693–700 695

Article https://doi.org/10.1038/s41558-023-01692-7

The solar PVPOT is sensitive to multiple meteorological factors, 
including surface downwelling shortwave radiation, temperature 
and wind speed (Methods). By fixing certain meteorological variables 
and varying others, we further decompose their individual contribu-
tions to solar PVPOT changes under different scenarios (Fig. 2). Overall, 
solar PVPOT changes under SSP2-4.5 relative to the historical period 
are mainly dominated by surface downwelling shortwave radiation (I) 
and temperature (T; Fig. 2a,b), with limited contributions from wind 
speed (W; Fig. 2c). For regions with increased solar PVPOT, including the 
eastern United States, western Europe and eastern China, although the 
increase of surface downwelling shortwave radiation is the main driver 
(Extended Data Fig. 2b), there are relatively small negative contribu-
tions from temperature because a warmer solar panel is less effective 
in converting solar energy into electricity (Extended Data Fig. 2a). For 
regions with decreased solar PVPOT (Fig. 1a), contributions from tem-
perature (increasing; Extended Data Fig. 2a) and surface downwelling 
shortwave radiation (decreasing; Extended Data Fig. 2b) are in the same 
direction and generally comparable in southern South America, India 
and western Africa, but a dominant contribution from the increasing 
temperature is found in the western United States.

In contrast to the governing factors for solar PVPOT changes under 
SSP2-4.5, surface downwelling shortwave radiation (Fig. 2d,g), not 
temperature (Fig. 2e,h), contributes most of the enhanced solar PVPOT 
in Asia (especially in eastern China and India) under carbon-neutral 
scenarios (MOD and STR) relative to the baseline scenario. The surface 
downwelling shortwave radiation increased notably in Asia under the 
carbon-neutral scenarios (Extended Data Fig. 2d,f), which improves 

solar energy harvesting. It is well known that surface downwelling 
shortwave radiation is primarily influenced by clouds and aerosol 
loadings38–41. We note that aerosol optical depth shows a large decline 
by 30–40% in eastern China and India during 2040–2049 under 
two carbon-neutral scenarios relative to SSP2-4.5 (Supplementary  
Fig. 2b,d). In contrast, a slight increase in cloud fraction is found over 
the same regions (Supplementary Fig. 2a,c). Therefore, the aerosol 
optical depth decrease due to sharp aerosol emission reductions in 
the carbon-neutral scenarios is the dominant factor driving the large 
increase in solar PVPOT in Asia. This co-benefit of air quality improve-
ment in China in enhancing solar PV was similarly reported recently42, 
but focusing on the historical trend during 1995–2014.

Changes in wind energy
We select a typical wind turbine of Sinovel SL3000 as an example to 
assess the wind energy under different climate scenarios (Fig. 3 and 
Supplementary Fig. 3). Relative to the historical period, annual mean 
wind power (WP) increases by >25% in the tropics and the southern 
subtropics but decreases by >10% in the northern mid-high latitudes 
during 2040–2049 under SSP2-4.5 (Fig. 3a). Such a strong interhemi-
spheric asymmetry response of WP to future warming was also identi-
fied by another recent study21, which attributed the decreased WP in the 
northern mid-high latitudes to polar amplification and the increased 
WP in the tropics and the southern subtropics to enhanced land–sea 
thermal gradients. Regionally, WP shows a large decrease (~8%) in the 
eastern United States but a moderate increase (3–6%) in western Africa, 
southern South America, India, eastern China and southeastern Asia 
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Fig. 2 | Attribution of solar PVPOT changes. a–c, The relative contributions of 
surface downwelling shortwave radiation (I; a), temperature (T; b) and wind 
speed (W; c) to solar PVPOT (%) changes during 2040–2049 under S245 relative 
to the historical period. d–f, The relative contributions of I (d), T (e) and W (f) 
to solar PVPOT changes during 2040–2049 under MOD relative to S245. g–i, 

The relative contributions of I (g), T (h) and W (i) to solar PVPOT changes during 
2040–2049 under STR relative to S245. Hatched regions have changes with high 
inter-model agreement defined as at least three of the four models agreeing on 
the sign of changes.
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during 2040–2049 under SSP2-4.5 relative to the historical period 
(red bars in Fig. 3d).

We further quantify how the projected changes in WP in the 
mid-twenty-first century can be affected by global carbon-neutral 
policies (Fig. 3b,c). The main feature of WP changes under deep miti-
gation scenarios is a west-to-east shift, instead of the north-to-south 
shift as noted in Fig. 3a. That is, in Asia, especially in eastern China but 
broadly in South Asia and northern Eurasia, the increase in WP during 
2040–2049 relative to the historical period is further enhanced from 
2% in SSP2-4.5 to 3% in the moderate carbon-neutral scenario (MOD) 
and 5% in the strong carbon-neutral scenario (STR). In contrast, the 
increase in WP in western Africa during 2040–2049 is reduced from 6% 
in SSP2-4.5 to 3% in the STR scenario (Fig. 3d). Such a major shift of wind 
energy resources towards Asia in the mid-twenty-first century driven 
by global carbon-neutral policies can be found more clearly from the 
absolute changes (Extended Data Fig. 3b,c), which consider the spatial 
heterogeneity of actual WP output (Supplementary Fig. 4). The changes 
in wind power density (WPD) also broadly match the spatial pattern of 
WP response to the carbon-neutral policies, only with slightly smaller 
magnitude (Extended Data Fig. 4).

WP changes are mainly caused by a shift in different wind speed 
conditions (Equation (9) in Methods). We further show the frequency 
changes of different wind speeds under future scenarios (Fig. 4). There 
are obvious changes for days below the cut-in wind speed (W < 3 m s−1) 
and within the ramp-up wind speed (3 ≤ W ≤ 11), but limited changes in 
rated-power wind speed (11 < W ≤ 25). Furthermore, spatial patterns 
of changes in cut-in and ramp-up wind speed days largely resemble 
those of WP. For example, more days under the ramp-up wind speed 
and less days in cut-in wind speed are found in eastern China and India 
(Fig. 4d,e,g,h), contributing favourably to the enhanced WP during 
2040–2049 under the MOD and STR scenarios relative to the baseline 
scenario. In regions with weakened WP, such as western Africa, the 

day below cut-in wind speed is increased, but days with ramp-up wind 
speeds are decreased. Our findings reveal the critical role of shifts 
between cut-in and ramp-up wind speeds, rather than days with opti-
mal conditions (rated-power wind speed of 11–25 m s−1), in governing 
future WP changes. Note that the WP results are presented here with 
an illustrative wind turbine and the results may change quantitatively 
for other types of turbine with different (ideally lower) cut-in wind 
speed. Nevertheless, in general, our results suggest the importance of 
accurately modelling low wind conditions in climate model projections.

Changes in temporal variability of solar PV and 
wind energy
Temporal variability is a key aspect of renewable energy sources, which 
strongly affects the stability of energy supply, leading to concerns about 
its large-scale deployment. Therefore, quantifying how the temporal 
variability of solar PV and wind energy changes in future is crucial for 
planning complementary energy sources and storage to secure a stable 
and reliable energy supply.

Using the normalized mean absolute deviation (NMAD), we show 
the variabilities of solar PVPOT and WP at various time scales in the his-
torical period (Extended Data Fig. 5). The global variabilities of solar 
PVPOT and WP all decrease from daily to monthly, and then to yearly, 
scales. This is because the seasonal cycle is stronger than inter-annual 
variation for meteorological variables. However, solar PVPOT and WP 
show an opposite spatial pattern in all day-to-day, month-to-month 
and year-to-year variabilities. From tropical to mid-high latitudes, the 
variability of solar PVPOT increases (Extended Data Fig. 5a,c,e), while 
the variability of WP decreases gradually (Extended Data Fig. 5b,d,f). 
Solar PVPOT mainly depends on sunlight capture and cell temperature.  
The strong seasonal variation in solar altitude angle in the mid-high lati-
tudes causes large disturbance to local surface downwelling shortwave 
radiation and temperature, leading to unstable solar power output.  
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S245 (red bars), MOD (blue bars) and STR (green bars) scenarios relative to the 
historical period. The markers are individual model values and the bars (black 
error bars) represent the mean values (one standard deviation) of four climate 
models. The hatched red (blue and green) bars have changes with high inter-
model agreement during 2040–2049 under S245 (MOD and STR) relative to the 
historical period (S245).
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But WP is dominated by wind speed at the hub height of wind turbines. 
In the tropics, the large variability of wind speed due to ocean–atmos-
phere oscillations results in unstable wind energy output22.

Climate change influences not only annual mean generation of 
solar PV and wind energy, but also its variabilities at various time scales. 
We show the changes in day-to-day, month-to-month and year-to-year 
variabilities of solar PVPOT and WP during 2040–2049 under three future 
climate change scenarios, all relative to the historical period (Fig. 5). 
For solar PVPOT, a higher temporal stability of daily and yearly solar PV 
outputs is found in the eastern United States, southern South America, 
western Europe and eastern China, which show large decreases dur-
ing 2040–2049 under SSP2-4.5 (Fig. 5a,e). However, the solar PVPOT 
in western Africa and India show large increases of day-to-day and 
month-to-month variabilities but decreases of year-to-year variabil-
ity during 2040–2049 under SSP2-4.5. For WP, the day-to-day and 
month-to-month variabilities both increase obviously in the eastern 
United States and India, indicating a weaker temporal stability of WP 
during 2040–2049 under SSP2-4.5 (Fig. 5b,d). In contrast, day-to-day 
and year-to-year variabilities decrease in western Africa and eastern 
China, suggesting a greater temporal stability of daily and yearly WP 
during 2040–2049 under SSP2-4.5 (Fig. 5d,f).

Although there are large regional differences in changes of 
solar PVPOT and WP variabilities during 2040–2049 under SSP2-4.5, 
we find that the changes of solar PVPOT and WP variabilities due to 
global carbon-neutral policies (indicated by the red arrows in Fig. 5) 
are overall consistent in most of sub-regions focused on here. The 
day-to-day, month-to-month and year-to-year variabilities of solar 
PVPOT decrease in five sub-regions (except for southern South America) 

during 2040–2049 under two carbon-neutral scenarios (MOD and STR) 
relative to SSP2-4.5. Furthermore, the day-to-day, month-to-month and 
year-to-year variabilities of WP decrease in the eastern United States, 
western Europe, India and eastern China during 2040–2049 under two 
carbon-neutral scenarios of MOD and STR relative to SSP2-4.5, with the 
exceptions in southern South America and western Africa with less 
changes (Fig. 5b,d,f). These findings indicate that global carbon-neutral 
policies improve the temporal stability of daily, monthly and yearly 
WP and solar PVPOT during 2040–2049 in most of global land regions 
studied here.

Discussion
Although recent studies have assessed renewable energy resources in 
response to future climate change20–26,43, several knowledge gaps remain 
to be filled for making sound clean energy policies: (1) many previous 
analyses focused on high-warming scenarios of RCP8.5 or RCP4.5, but 
the COVID-19 pandemic may have provided a vital opportunity to accel-
erate the renewable transition in coming decades faster than assumed 
in previous high-warming scenarios; (2) most studies were limited to 
regional scale or a certain type of renewable energy, while a global 
analysis is needed to provide an integrated assessment towards building 
a comprehensive energy supply system; (3) the variability across vari-
ous time scales is generally missing in previous regional assessments 
of renewable energy, despite being known as a major issue strongly 
affecting the stability and reliability of energy supply; and (4) previous 
assessments calculated the 100 m wind speed from 10 m wind speed 
using a constant scaling factor, which thus has probably introduced a 
large bias in projected wind energy (Supplementary Fig. 5). Leveraging 
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on previous studies, our analysis presents a comprehensive global 
assessment of both solar PV and wind energy, including annual mean 
power potential as well as temporal stability at various time scales. Our 
analysis is based on large multi-model ensemble simulations (2400 
model years of daily data) that are bias-corrected using a multivariable 
approach. We estimate the wind speed at 100 m using a spatially variant 
scaling factor, which is closer to benchmark. The model projections 
are run under two deep decarbonization scenarios, reaching global 
carbon neutrality much earlier than previous scenarios.

Our findings that climate change mitigation would improve the 
mean solar PV in Europe, India and China are qualitatively consistent 
with previous assessments comparing other emission scenarios (for 
example, RCP2.6 versus 6.0 and RCP4.5 versus 8.5)24,43,44, but with 
notable magnitude difference. For example, in contrast to decreased 
solar PV in India at the end of the twenty-first century (2070–2100) 
under RCP2.6 scenario24, we find that the projected decrease in solar 
PV will rebound to the historical level by the mid-twenty-first century 
(2040–2049) in the STR scenario (Fig. 1d). The north-to-south inter-
hemispheric shift of wind energy under SSP2-4.5 relative to the histori-
cal period largely agrees with an early study21, but our study highlights a 
notable west-to-east shift of wind energy due to deep decarbonization. 
Regionally, the large enhancement (>20%) of wind energy in western 
Africa during 2040–2069 under SSP5-8.5 relative to the historical 
period45 would be weakened to 3% during 2040–2049 in the STR sce-
nario (Fig. 3d). The further enhancement in solar PV and wind energy is 
mainly attributed sharp reductions in anthropogenic aerosol emissions 
(Supplementary Fig. 2). Aerosol emissions reduction can improve the 

solar energy capture (due to larger surface downwelling shortwave 
and, to a lesser extent, the cooler PV cells) and increase the favourable 
ramp-up wind speed conditions.

Reaching global carbon neutrality by the mid-twenty-first century 
is a bold goal for climate change mitigation. More than 120 nations, 
contributing 70% of global CO2 emissions, have pledged to reach net 
zero carbon emissions by the mid-twenty-first century31,46. Meanwhile, 
the installation of renewable energy capacity, including solar PV and 
wind, is accelerating worldwide. It is expected that the global renew-
able energy capacity will increase by about 75% in the next five years47. 
Although the world is moving in the right direction, much needs to be 
done to reach net zero carbon emissions by the mid-twenty-first cen-
tury. A few recommendations can be made based on the analysis here. 
(1) Coordination of renewable energy capacity building at the interna-
tional level is required due to large regional differences in renewable 
energy quality (Extended Data Fig. 6). (2) Planning of complementary 
energy sources because the projected power potentials’ response to 
future climate change are different for different types of renewable 
energy. For example, solar PV increases but wind energy decreases in 
western Africa due to deep decarbonization (Figs. 1 and 3). (3) Smart 
design of energy transmission and storage due to the temporal inter-
mittency of renewable energy. Each country should set their own 
priorities based on underlying climate and climate projection, local 
resources, expertise and technologies.

Some uncertainties are acknowledged here. First, the wind energy 
and solar PVPOT are estimated on a daily scale due to model output 
availability. Here, we compare wind energy and solar PVPOT calculated 
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Fig. 5 | Changes in variability of solar PVPOT and WP at various time scales. 
a,c,e, The relative changes in day-to-day (a), month-to-month (c) and year- 
to-year (e) variability of solar PVPOT during 2040–2049 under S245 (red bars), 
MOD (blue bars) and STR (green bars) relative to the historical period.  
b,d,f, The same but for relative changes in day-to-day (b), month-to-month 
(d) and year-to-year (f) variability of WP. The markers are individual model 

values and the bars (black error bars) represent the mean values (one standard 
deviation) of four climate models. The hatched red (blue and green) bars have 
changes with high inter-model agreement defined as at least three of the four 
models agreeing on the sign of changes during 2040–2049 under S245 (MOD 
and STR) relative to the historical period (S245). The six sub-regions are defined 
in the Fig. 1 caption.
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based on daily and hourly fifth generation European Centre for 
Medium-Range Weather Forecasts (ERA5) reanalysis during 1995–2014. 
The daily-based wind energy underestimates hourly-based wind energy 
by 7.4% on global average due to high frequency fluctuation aver-
aged out at the daily level (Supplementary Fig. 6). On the contrary, the 
daily-based solar PVPOT shows a positive bias of 6.3% on global average 
compared with hourly-based solar PVPOT (Supplementary Fig. 7). By fix-
ing two of three hourly variables and varying the third daily variable, we 
further show that such positive bias of solar PVPOT is mainly dominated 
by daily surface downwelling shortwave radiation (Supplementary  
Fig. 8b), with limited contributions from daily temperature and wind 
speed (Supplementary Fig. 8a,c). Second, the temporal variability 
within a day is not included, again due to lack of sub-daily model out-
put. The solar PVPOT shows a strong intra-daily variability: zero during 
the night and peaking in the noontime48,49. Compared to solar PVPOT, 
the wind energy is relatively stable in a day. However, observational 
studies showed that wind energy tended to be unstable in a day under 
clear-sky rather than all-sky conditions50. Third, climate feedback 
due to constructed wind or solar farms is not considered in the model 
simulations here. Previous studies show that the installed wind turbines 
and PV panels would modify land surface properties, such as roughness 
and albedo, resulting in changes in regional climate51–53.

Despite these limitations, our results are valuable in making sound 
long-term plans of renewable investments across global regions. The find-
ings that some regions are projected to observe large co-benefits of wind 
energy and solar PV associated with deep decarbonization could, in turn, 
support a faster clean energy transition to achieve the carbon-neutrality 
target, hence completing a favourable human–nature feedback loop. This 
is in stark contrast with previously reported detrimental feedback loops, 
for example, where global warming could reduce the potential capacity 
of bioenergy with carbon capture and storage54, damaging the chances 
of meeting the global carbon-neutrality goal. In order to facilitate the 
transition into a global economy powered by clean energy, international 
coordination should be strengthened further, due to the spatial, temporal 
and technological imbalance of renewable energy resources.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41558-023-01692-7.
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Methods
CovidMIP simulation
The multi-model ensemble simulations from CovidMIP were used to 
investigate changes in solar PV and wind energy potentials in response 
to carbon-neutral policies. In CovidMIP, the baseline scenario follows 
the SSP2-4.5, a medium pathway of future greenhouse gas emissions 
with a global mean warming of about 2 °C in the 2050s and 2.6 °C in 
210055. Accounting for anthropogenic emissions decline during the 
COVID-19 pandemic and the possible fast renewable transition during 
the post-pandemic recovery, CovidMIP produced two carbon-neutral 
pathways from 2020 to 2050: a moderate green recovery (MOD) and 
a strong green recovery (STR)35. These two carbon-neutral scenarios 
both include a ‘two-year-blip’ period (2020–2021), which is not the 
focus of our analysis here, followed by the moderate MOD and faster 
STR scenarios towards reaching global carbon neutrality by 2060 and 
2050, respectively.

Six ESMs participated in CovidMIP, four of which, ACCESS-ESM-5, 
MIROC-ES2L, MPI-ESM1-2-LR and MRI-ESM2-0 (Supplementary  
Table 1), are used here, because they made available daily output of 
surface air temperature (T), surface downwelling shortwave radia-
tion (I) and 10 m wind speed (W, calculated by meridional and zonal 
winds), which are necessary to quantify solar PV and wind energy, 
especially their day-to-day variability. All four models provided 
large ensemble simulations (30-member for ACCESS-ESM-5 and 
MIROC-ES2L, and 10-member for MPI-ESM1-2-LR and MRI-ESM2-0), 
which allows a robust quantification of projection uncertainty. In 
addition, the same number of simulations for each model (as in 
Supplementary Table 1) are selected from the historical experiment 
(1995–2014) from CMIP6 to evaluate model skill and correct biases, 
and to provide a base period to quantify future changes of solar PV 
and wind energy. In this study, we first calculate renewable energy in 
individual ensemble members, which is then averaged to each model 
and the multi-model generation.

Bias correction
To evaluate model performance in simulating solar PV and wind 
energy during the historical period (1995–2014), we obtain daily 
(averaged from hourly) T, I and W (calculated by meridional and zonal 
winds) from the ERA5 reanalysis. ERA5 has been evaluated extensively 
in earlier studies and is found to be one of the best global reanalysis 
products56,57, widely used as a benchmark to evaluate and correct 
model simulations58,59. An early study showed that the ERA5 reanalysis 
overestimated global I by 4.05 W m−2 (~3%) using site-based solar radia-
tion from the Baseline Surface Radiation Network57. Here, we further 
evaluate T and W from the ERA5 reanalysis based on global observa-
tions at 3,511 weather stations. Compared with observations, the ERA5 
reanalysis well captures global T and W with low normalized mean 
biases of −0.2% and 3.0%, respectively (Supplementary Fig. 9), much 
smaller than model–ERA5 discrepancy (Extended Data Fig. 6c,d).  
To maintain the consistency of spatial resolution among the four 
ESMs, both reanalysis and model outputs are re-gridded to a 
median resolution of 2 × 2° using the bilinear interpolation method.  
To improve the robustness of the model projection, we use the multi-
variate bias correction technique based on the n-dimensional prob-
ability density function transform (MBCn) to simultaneously correct 
daily T, I and W in historical and future model simulations using the 
ERA5 reanalysis as the benchmark.

MBCn is a multivariate generalization of quantile delta mapping, 
which considers the dependence among different variables60. In using 
MBCn, three datasets are included: historical observations (Xobs), his-
torical simulations (Xhist) and projected simulations (Xproj). First, we 
rotate Xobs, Xhist and Xproj with an N × N uniformly distributed random 
orthogonal rotation matrix R[j] at the jth iteration:

⎧
⎪
⎨
⎪
⎩

X̃[j]obs = X[j]obsR
[j]

X̃[j]hist = X[j]histR
[j]

X̃[j]proj = X[j]projR
[j]

(1)

Second, the quantile delta mapping method uses the same empiri-
cal cumulative distribution function (CDF) for simulations (historical 
and future) and observation, but it preserves the signal of future 
changes in climate projections61. This method is applied to obtain 
bias-corrected datasets in historical and projected simulations ( ̂X

[j]
hist 

and ̂X
[j]
proj):

⎧
⎨
⎩

̂X
[j]
hist = F−1obs (Fhist (X̃

[j]
hist))

̂X
[j]
proj = X̃[j]proj + F−1obs (Fproj (X̃

[j]
proj)) − F−1hist (Fproj (X̃

[j]
proj))

(2)

where Fhist and Fproj represent the CDFs of X̃[j]hist and X̃[j]proj, respectively. 
F−1obs and F−1hist represent the inverse CDFs of X̃[j]obs and X̃[j]hist, respectively.

Finally, the bias-corrected datasets are rotated back:

⎧
⎨
⎩

X[j+1]hist = ̂X
[j]
histR[j]

−1

X[j+1]proj = ̂X
[j]
projR[j]

−1
(3)

For historical or projected simulation correction, we repeat the 
above three steps until the multivariate distribution of X[j+1]hist  or X[j+1]proj  
matches that of Xobs.

The MBCn is applied to individual members of each ESM’s simula-
tion, separately.

Calculation of solar PV
Solar PV power yield depends on PV power generation potential (PVPOT) 
and installed capacity. PVPOT is a dimensionless value, which describes 
the performance of PV cells relative to the nominal power capacity 
under actual environmental conditions. Therefore, PVPOT multiplied 
by the nominal installed watts of PV power capacity is the actual PV 
power generation. Following previous studies15,43,62, we used daily T, I 
and W to calculate PVPOT:

PVPOT = PR
I

ISTC
(4)

where I represents surface downwelling shortwave radiation and ISTC 
represents shortwave flux on the PV panel under standard test condi-
tions, defined as a constant of 1,000 W m−2. PR is the performance ratio, 
representing temperature influence on PV efficiency:

PR = 1 + γ (Tcell − TSTC) (5)

where γ is defined as −0.005 °C−1 in monocrystalline silicon solar panels, 
representing the negative impact on conversion efficiency, and TSTC is 
the cell temperature under standard test conditions (25 °C). Tcell is the 
actual cell temperature, which is approximated by T, I and W:

Tcell = a1 + a2 × T + a3 × I + a4 ×W (6)

where a1, a2, a3 and a4 are taken as 4.3 °C, 0.943 (unitless), 0.028 °C  
(W m−2)−1 and −1.528 °C (m s−1)−1, respectively. These coefficients rep-
resent the influence of meteorological conditions on the cell tem-
perature. The ambient T determines the base temperature of the cell, 
a strong I increases the cell temperature and W decreases cell tem-
perature. These coefficients are found to be fairly independent on 
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site location and cell technology type63, which have been widely used 
to predict PV cell temperature15,43,64.

Calculation of wind energy
WPD (W m−2) is a typical measure of wind energy potential65, defined 
as follows:

WPD = 1
2ρW

3
h (7)

where ρ represents the air density, which is assumed to be a constant 
value of 1.213 kg m−3 at standard atmospheric conditions, and Wh rep-
resents the wind speed at the 100 m hub height.

It is noted that Wh is not available from climate model outputs here. 
Similar to previous studies22,23,25, Wh is extrapolated from the 10 m wind 
speed (W) using the wind power law:

Wz
Wzref

= ( z
zref

)
α

(8)

where Wz represents the wind speed at a height z and Wzref  represents 
the wind speed at a reference height zref. The scaling factor of α, repre-
senting how quickly the wind decays towards the ground, is often 
approximated as a constant of 0.143 over land surface in previous 
studies22,26,45. As the ERA5 reanalysis provided wind speeds at both 10 m 
and 100 m, here we estimate α at each location grid (Extended Data  
Fig. 7) to account for spatial disparity. The higher values of 0.2–0.25 
are mainly located in the eastern United States, eastern China, Amazon, 
India and northern Asia due to large forest coverage, but the lower 
values of 0.12–0.16 usually occur in flat terrain of desert and steppe. 
As an improvement to a few previous studies using a constant scaling 
factor21,22, the wind speed at 100 m here estimated using a spatially 
variant scaling factor is closer to the benchmark (Supplementary  
Fig. 5c versus b). The normalized mean bias decreases from −10.1% to 
−0.4% on global average. In contrast to the large spatial heterogeneity, 
the scaling factor only shows a small temporal variability (Supplemen-
tary Fig. 10 showing seasonal change as an example), resulting in limited 
benefits on estimation of 100 m wind speed (Supplementary Fig. 5d 
versus c; −0.4% improved to −0.3%). Therefore, the spatially variant 
but temporally invariant scaling factor is adopted here to estimate 
100 m wind speed from the 10 m wind speed in the model output.

The actual wind power (WP in KW) is sensitive to wind speed and 
wind turbine. Here, we adopt a typical wind turbine of Sinovel SL3000 
(https://en.wind-turbine-models.com/turbines/41-sinovel-sl3000-113) 
as an example to describe WP20:

WP =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

0 Wh ∈ [0, 3] (belowcut-in)

−0.24151 ×Wh
5 + 6.9287 ×Wh

4 − 74.2354 ×Wh
3 + 412.0241 ×Wh

2

−1,049.58726 ×Wh + 956.1936Wh ∈ [3, 11] (ramp-up)

3,000 Wh ∈ [11, 25] (rated-power)

0 Wh ∈ (25, +∞) (above cut-out)
(9)

where the turbine starts functioning at 3 m s−1, generating the rated-power 
of 3,000 KW at 11 m s−1 or above, but needs be shut down at 25 m s−1. There-
fore, 3 m s−1 and 25 m s−1 are defined as cut-in and cut-out speeds, respec-
tively. The wind speed of 3 to 11 m s−1 is defined as ramp-up condition 
and the wind speed of 11 to 25 m s−1 is defined as rated-power condition.

Temporal variability of solar PV and wind energy
For both solar and wind energy, we first calculate the daily value 
using model outputs, which is then averaged to monthly and annual 

generation over all locations. It is well known that solar PV and wind 
energy generation are heavily influenced by weather fluctuation, which 
yields strong variability at various time scales. Understanding the 
variability of renewable energy is vital for coordinating compensa-
tory energy sources and storage in order to secure a stable energy 
supply66,67.

Here, we use the metric of NMAD to quantify the day-to-day, 
month-to-month and year-to-year variability of renewable energy. 
For any given time series (Ti, i = 1,2,…N), the NMAD (%) is defined as the 
mean absolute deviation divided by the mean:

NMAD = Mean [|Ti −Mean (T) |]
Mean(T) × 100%. (10)

For day-to-day and month-to-month variability of solar PV and 
wind energy, we first calculate the corresponding NMAD for each year, 
and then present the multi-year average of NMAD.

Model evaluation with bias correction
Climate model simulations of solar PV and wind energy resources 
remain highly uncertain21,36,45. Here, we evaluate the simulated solar 
PV and wind energy in the historical period (1995–2014) against ERA5 
(Extended Data Fig. 6). The observed solar PVPOT shows a smooth global 
spatial contrast (Extended Data Fig. 6a). In global arid and semi-arid 
regions, including the western United States, northern Africa, west-
ern Asia and Australia, the solar PVPOT shows higher values of >0.24. 
However, the solar PVPOT is relatively lower in global monsoon regions, 
including east Asia, south Asia, central Africa, southeastern North 
America and the Amazon. Such a spatial pattern can be attributed to 
more clouds in those monsoon regions and possibly denser vegetation 
cover, leading to less solar radiation available at the ground level68–70. 
Compared with reanalysis, the raw output from model simulation 
overestimates the solar PVPOT by more than 15% in southeastern Asia, the 
Amazon and western Africa, but underestimates it by approximately 
10% in the western United States, northeastern Asia and western Asia 
(Extended Data Fig. 6c). Using the MBCn technique to jointly correct 
T, I and W, the calculated solar PVPOT from the model simulation agrees 
well with the observation, with a relative bias of less than 1% over all land 
grids (Extended Data Fig. 6e).

In contrast to the solar PVPOT, the observed annual mean WPD 
shows very large spatial heterogeneity (Extended Data Fig. 6b). The 
large values of >160 W m−2 are mainly located in the central United 
States, Europe, midwestern Australia, northern Africa and northern 
Asia. The annual mean WPD of 60–100 W m−2 is found in eastern China, 
India and southern Africa. However, the annual mean WPD is smaller 
than 20 W m−2 in the tropics, including the Amazon, central Africa and 
southeastern Asia, where there are light winds due to a small horizontal 
temperature gradient and large surface friction over vegetated lands. 
Compared with observation, the raw ensemble mean simulation shows 
very large biases across the world, with a mean relative bias of 49.4% 
over global lands (Extended Data Fig. 6d). Regionally, simulated annual 
mean WPD is overestimated by more than 100% in the western United 
States, northern Africa, India, Australia and most of Asia, but under-
estimated by 50–70% in Europe, the Amazon and central Africa. After 
the MBCn bias correction, the simulated annual mean WPD is close to 
observation at both global and regional scales (Extended Data Fig. 6f). 
The global spatial relative bias decreases from 49.4% to −7.5%. In most 
regions of the world (other than Greenland and southern Australia), 
the relative bias is smaller than 15%.

The evaluations demonstrate the need of bias correction to 
improve the fidelity of model simulations. Here, the same bias cor-
rection is applied to the ensemble future projection in CovidMIP to 
investigate the future changes in solar PV and wind energy. This type 
of multivariant bias correction for climate variables has been done 
for many climate impact studies71–73, but not in previous renewable 
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energy resources analysis. Compared with an early assessment based 
on traditional bias-corrected climate data24, our study uses the MBCn 
method, which considers the dependence across climate variables, 
and represents an advance from the widely used single-variable bias 
correction.

Data availability
The ERA5 reanalysis can be obtained at https://www.ecmwf.int/en/
forecasts/dataset/ecmwf-reanalysis-v5. The multi-model outputs 
(experiments names: historical, ssp245, ssp245-cov-strgreen and 
ssp245-cov-strgreen) are available at https://esgf-node.llnl.gov/search/
cmip6/.

Code availability
The bias correction is based on the open-source R package of MBCn 
(https://rdrr.io/cran/MBC/man/MBCn.html).
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Extended Data Fig. 1 | Changes of solar photovoltaic potential (PVPVPVPOTPOTPOT) under 
different climate change scenarios, shown in absolute values rather than 
relative values in Fig.1. (a), The changes of annual mean solar PVPOT  during 
2040–2049 under SSP2-4.5 (S245) relative to the historical period (Unitless).  

(b)-(c), The changes of annual mean solar PVPOT  during 2040–2049 under the 
moderate (MOD) and strong (STR) carbon-neutral scenarios relative to S245 (Unitless). 
Hatched regions represent a change with high inter-model agreement defined as at 
least three of the four CovidMIP models agreeing on the direction of change.
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Extended Data Fig. 2 | Annual changes of temperature (T, units: °C) and 
downwelling shortwave radiation (I, units: W/m2). (a-b), The changes of 
annual mean T and I during 2040–2049 under the SSP2-4.5 scenario (S245) 
relative to the historical period. (c-d), The changes of annual mean T and I during 
2040–2049 under the moderate (MOD) carbon-neutral scenario relative to S245. 

(e-f ), The changes of annual mean T and I during 2040–2049 under the strong 
(STR) carbon-neutral scenario relative to S245. Hatched regions represent a 
change with high inter-model agreement defined as at least three of the four 
CovidMIP models agreeing on the direction of change.
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Extended Data Fig. 3 | Changes of wind power (WP) under different climate 
change scenarios, shown in absolute values rather than relative values in 
Fig. 3. (a), The changes of annual mean WP during 2040–2049 under SSP2-4.5 
(S245) relative to the historical period (units: KW). (b)-(c), The changes of annual 

mean WP during 2040–2049 under the moderate (MOD) and strong (STR) 
carbon-neutral scenarios relative to S245 (units: KW). Hatched regions represent 
a change with high inter-model agreement defined as at least three of the four 
CovidMIP models agreeing on the direction of change.
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Extended Data Fig. 4 | Changes of wind power density (WPD) (units: %). 
(a), The relative changes of annual mean WPD during 2040–2049 under S245 
relative to the historical period. (b)-(c), The relative changes of annual mean 
WPD during 2040–2049 under MOD and STR relative to S245. Hatched regions 
have changes with high inter-model agreement defined as at least three of the 
four models agreeing on the sign of changes. (d), Regional mean relative changes 

of annual WPD during 2040–2049 under the S245 (red bars), MOD (blue bars), 
and STR (green bars) scenarios relative to the historical period. The black error 
bars represent one standard deviation of four climate models. The hatched red 
(blue and green) bars have changes with high inter-model agreement during 
2040–2049 under S245 (MOD and STR) relative to the historical period (S245).
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Extended Data Fig. 5 | Variability of solar photovoltaic potential (PVPVPVPOTPOTPOT ) and wind power (WP) at various time scales in the historical period. (a), (c), and (e), 
Day-to-day, month-to-month, and year-to-year variability of solar PVPOT  in the historical period (units: %). (b), (d), and (f ), same as left panels but for WP.
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Extended Data Fig. 6 | Spatial distributions of observed and simulated solar 
photovoltaic potential (PVPVPVPOTPOTPOT ) and Wind Power Density (WPD). (a, b), 
Observed annual mean solar PVPOT  (Unitless) and WPD (units: W/m2) in the 
historical period (1995–2014). (c)-(d), The relative biases of solar PVPOT  and WPD 

from raw multi-model mean simulation (units: %). (e)-(f ), The relative biases of 
solar PVPOT  and WPD from bias-corrected multi-model mean simulation (units: 
%). Please note the differences in color scales.
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Extended Data Fig. 7 | Estimate of annual mean wind speed in the historical period (1995-2014). (a, b), Annual mean wind speed at 10 m and 100 m. (c), Annual 
mean of scaling factor α  converting 10 m wind speed to 100 m. Scaling factor was calculated from daily data before taking annual average.
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