Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Social cost of carbon estimates have increased over time


Estimates of the social cost of carbon are the yardstick for climate policy targets. However, there is great uncertainty and we do not know how estimates have evolved over time. Here I present a meta-analysis of published estimates showing that the social cost of carbon has increased as knowledge about climate change accumulates. Correcting for inflation and emission year and controlling for the discount rate, kernel density decomposition reveals a non-stationary distribution. In the past 10 years, estimates of the social cost of carbon have increased from US$9 per tCO2 to US$40 per tCO2 for a high discount rate and from US$122 per tCO2 to US$525 per tCO2 for a low discount rate. This trend is statistically significant if sensitivity analyses are discounted and paper quality weighted. Actual carbon prices are below its estimated value almost everywhere and should therefore go up.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Average social cost of carbon by publication year.
Fig. 2: Histogram of the social cost of carbon.

Data availability

All data can be found in GitHub.Source data are provided with this paper.

Code availability

All code can be found in GitHub.


  1. Nordhaus, W. D. How fast should we graze the global commons? Am. Econ. Rev. 72, 242–246 (1982).

    Google Scholar 

  2. Pigou, A. C. The Economics of Welfare (Macmillan, 1920).

  3. Bator, F. M. The anatomy of market failure. Q. J. Econ. 72, 351–379 (1958).

    Article  Google Scholar 

  4. Pareto, V. Manuale di Economia Politica con Una Introduzione Alla Scienza Sociale (Società Editrice Libraria, 1906).

  5. Kaufman, N., Barron, A. R., Krawczyk, W., Marsters, P. & McJeon, H. A near-term to net zero alternative to the social cost of carbon for setting carbon prices. Nat. Clim. Change 10, 1010–1014 (2020).

    Article  CAS  Google Scholar 

  6. Stern, N. H. & Stiglitz, J. E. The Social Cost of Carbon, Risk, Distribution, Market Failures: An Alternative Approach Working Paper 28472 (National Bureau of Economic Research, 2021).

  7. Rennert, K. et al. Comprehensive evidence implies a higher social cost of CO2. Nature 610, 687–692 (2022).

    Article  CAS  Google Scholar 

  8. Dietz, S. & Venmans, F. Cumulative carbon emissions and economic policy: in search of general principles. J. Environ. Econ. Manage. 96, 108–129 (2019).

    Article  Google Scholar 

  9. NDC Synthesis Report (UNFCCC, 2021).

  10. Biden, J. R. Executive Order on Protecting Public Health and the Environment and Restoring Science to Tackle the Climate Crisis (The White House, 2021).

  11. Report on the Social Cost of Greenhouse Gases: Estimates Incorporating Recent Scientific Advances (EPA, 2022);

  12. Taconet, N., Guivarch, C. & Pottier, A. Social cost of carbon under stochastic tipping points. Environ. Resour. Econ. 78, 709–737 (2021).

    Article  Google Scholar 

  13. van der Ploeg, F. & Withagen, C. Growth, renewables, and the optimal carbon tax. Int. Econ. Rev. 55, 283–311 (2014).

    Article  Google Scholar 

  14. Anthoff, D. & Tol, R. S. J. The uncertainty about the social cost of carbon: a decomposition analysis using FUND. Clim. Change 117, 515–530 (2013).

    Article  Google Scholar 

  15. Diaz, D. & Moore, F. Quantifying the economic risks of climate change. Nat. Clim. Change 7, 774–782 (2017).

    Article  Google Scholar 

  16. Nordhaus, W. D. Evolution of modeling of the economics of global warming: changes in the DICE model, 1992–2017. Clim. Change 148, 623–640 (2018).

    Article  Google Scholar 

  17. Hänsel, M. C. et al. Climate economics support for the UN climate targets. Nat. Clim. Change 10, 781–789 (2020).

    Article  Google Scholar 

  18. Golosov, M., Hassler, J., Krusell, P. & Tsyvinski, A. Optimal taxes on fossil fuel in general equilibrium. Econometrica 82, 41–88 (2014).

    Article  Google Scholar 

  19. van den Bremer, T. S. & van der Ploeg, F. The risk-adjusted carbon price. Am. Econ. Rev. 111, 2782–2810 (2021).

    Article  Google Scholar 

  20. Havranek, T., Irsova, Z., Janda, K. & Zilberman, D. Selective reporting and the social cost of carbon. Energy Econ. 51, 394–406 (2015).

    Article  Google Scholar 

  21. Wang, P., Deng, X., Zhou, H. & Yu, S. Estimates of the social cost of carbon: a review based on meta-analysis. J. Clean. Prod. 209, 1494–1507 (2019).

    Article  Google Scholar 

  22. Tol, R. S. J. The marginal costs of greenhouse gas emissions. Energy J. 20, 61–81 (1999).

    Article  Google Scholar 

  23. Roe, G. H. & Baker, M. B. Why is climate sensitivity so unpredictable? Science 318, 629–632 (2007).

    Article  CAS  Google Scholar 

  24. Nordhaus, W. D. An optimal transition path for controlling greenhouse gases. Science 258, 1315–1319 (1992).

    Article  CAS  Google Scholar 

  25. Anthoff, D., Tol, R. S. J. & Yohe, G. W. Risk aversion, time preference, and the social cost of carbon. Environ. Res. Lett. 4, 024002 (2009).

    Article  Google Scholar 

  26. Weitzman, M. L. On modeling and interpreting the economics of catastrophic climate change. Rev. Econ. Stat. 91, 1–19 (2009).

    Article  Google Scholar 

  27. Takezawa, K. Introduction to Nonparametric Regression (John Wiley and Sons, 2005).

  28. Tol, R. S. J. The economic impacts of climate change. Rev. Environ. Econ. Policy 12, 4–25 (2018).

    Article  Google Scholar 

  29. Altman, N. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46, 175–185 (1992).

    Google Scholar 

  30. Yu, K. & Jones, M. Local linear quantile regression. J. Am. Stat. Assoc. 93, 228–237 (1998).

    Article  Google Scholar 

  31. Pearce, D. W. et al. in Climate Change 1995: Economic and Social Dimensions (eds Bruce, J. P. et al.) 179–224 (IPCC, Cambridge Univ. Press, 1996).

  32. Smith, J. B. et al. in Climate Change 2001: Impacts, Adaptation, and Vulnerability (eds McCarthy, J. J. et al.) 913–967 (Cambridge Univ. Press, 2001).

  33. Stern, N. H. et al. Stern Review: The Economics of Climate Change (HM Treasury, 2006).

  34. Interagency Working Group on the Social Cost of Carbon. Technical Support Document: Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order 12866 (United States Government, 2013).

  35. Nordhaus, W. D. Climate change: the ultimate challenge for economics. Am. Econ. Rev. 109, 1991–2014 (2019).

    Article  Google Scholar 

  36. Quetelet, A. Lettres à S. A. R. le Duc Régnant de Saxe-Cobourget Gotha, sur la théorie des probabilités, appliquée aux sciences morales et politiques. (Hayez, 1846).

  37. Pearson, K. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Lond. Edinb. Dubl. Phil. Mag. J. Sci. 50, 157–175 (1900).

    Article  Google Scholar 

  38. Andrews, I. & Kasy, M. Identification of and correction for publication bias. Am. Econ. Rev. 109, 2766–2794 (2019).

    Article  Google Scholar 

  39. Fisman, R., Jakiela, P., Kariv, S. & Markovits, D. The distributional preferences of an elite. Science 349, aab0096 (2015).

    Article  Google Scholar 

  40. Drupp, M. A., Freeman, M. C., Groom, B. & Nesje, F. Discounting disentangled. Am. Econ. J. Econ. Policy 10, 109–134 (2018).

    Article  Google Scholar 

  41. Tol, R. S. J. A meta-analysis of the total economic impact of climate change. Preprint at arXiv (2022).

  42. van den Bergh, J. C. J. M. & Botzen, W. J. W. A lower bound to the social cost of CO2 emissions. Nat. Clim. Change 4, 253–258 (2014).

    Article  Google Scholar 

  43. Base the social cost of carbon on the science. Nature 541, 260 (2017).

  44. Wagner, G. Recalculate the social cost of carbon. Nat. Clim. Change 11, 293–294 (2021).

    Article  Google Scholar 

  45. Burke, M. et al. Opportunities for advances in climate change economics. Science 352, 292–293 (2016).

    Article  CAS  Google Scholar 

  46. Marten, A. L. et al. Improving the assessment and valuation of climate change impacts for policy and regulatory analysis. Clim. Change 117, 433–438 (2013).

    Article  Google Scholar 

  47. Valuing Climate Damages. Updating Estimation of the Social Cost of Carbon Dioxide (National Academies of Sciences, Engineering, and Medicine, 2017).

  48. Wagner, G. et al. Eight priorities for calculating the social cost of carbon. Nature 590, 548–550 (2021).

    Article  CAS  Google Scholar 

  49. Carbon Pricing Dashboard (The World Bank, 2021).

  50. ICAP Allowance Price Explorer (International Carbon Action Partnership, 2021).

  51. Jones, M. C. & Signorini, D. F. A comparison of higher-order bias kernel density estimators. J. Am. Stat. Assoc. 92, 1063–1073 (1997).

    Article  Google Scholar 

  52. Quetelet, A. Sur quelques propriétés curieuses que présentent les résultats d’une serie d’observations, faites dans la vue de déterminer une constante, lorsque les chances de rencontrer des écarts en plus et en moins sont égales et indépendantés les unes des autres. Bull. Cl. Sci. Acad. R. Belg. 19, 303–317 (1852).

    Google Scholar 

  53. Pearson, K. III. Contributions to the mathematical theory of evolution. Phil. Trans. R. Soc. Lond. A 185, 71–110 (1894).

    Article  Google Scholar 

  54. Laplace, P.-S. Essai Philosophique sur les Probabilités, 1st edn (Ve Courcier, 1814).

  55. Makov, U. E. in International Encyclopedia of the Social and Behavioral Sciences (eds Smelser, N. J. & Baltes, P. B.) 9910–9915 (Pergamon, 2001).

  56. McLachlan, G. & Peel, D. Finite Mixture Models (John Wiley and Sons, 2001).

Download references


P. Dolton, E. Lavoie and J. Stock provided constructive comments on earlier versions that made this paper much better. A number of authors gracefully shared their estimates of the social cost of carbon. No external funding supported this research.

Author information

Authors and Affiliations



This is a single-authored paper. There are no ghostwriters and no research assistants.

Corresponding author

Correspondence to Richard S. J. Tol.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Climate Change thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Year of emission and year of nominal dollar by year of publication.

Estimates are weighted such that every published paper counts equally.

Source data

Extended Data Fig. 2 Composite kernel density of the growth rate of the social cost of carbon and its composition by discount rate.

Source data

Extended Data Fig. 3 Empirical median and interquartile range of the social cost of carbon for six subperiods and the whole sample, and for four alternative weights.

Sample sizes and further statistics are in Supplementary Tables S1 and S2.

Source data

Extended Data Fig. 4 The pure rate of time preference used to estimate the social cost of carbon by publication period.

Estimates are weighted such that every published paper counts equally.

Source data

Extended Data Fig. 5 Year fixed effects from a regression of the social cost of carbon on the pure rate of time preference, using quality weights.

The base year is 1982; dots denoted the estimated coefficients; error bars denote the 67% confidence interval.

Source data

Extended Data Fig. 6 Composite kernel density of the social cost of carbon and its composition by the pure rate of time preference.

Source data

Supplementary information

Supplementary Information

Full list of references, Supplementary Tables 1–18, Supplementary Figs. 1–16 and a description of the assumptions and methods behind these tables and figures.

Source data

Source Data Fig. 1

Raw data, tables and figures; at

Source Data Fig. 2

Raw data, tables and figures (top); bespoke statistical software (bottom); at

Source Data Extended Data Fig. 1

Raw data, tables and figures.

Source Data Extended Data Fig. 2

Bespoke statistical software, at

Source Data Extended Data Fig. 3

Raw data, tables and figures.

Source Data Extended Data Fig. 4

Raw data, tables and figures.

Source Data Extended Data Fig. 5

Regression results from and socialcostcarbon.dta; at

Source Data Extended Data Fig. 6

Bespoke statistical software, at

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tol, R.S.J. Social cost of carbon estimates have increased over time. Nat. Clim. Chang. 13, 532–536 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing