Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biogenic factors explain soil carbon in paired urban and natural ecosystems worldwide


Urban greenspaces support multiple nature-based services, many of which depend on the amount of soil carbon (C). Yet, the environmental drivers of soil C and its sensitivity to warming are still poorly understood globally. Here we use soil samples from 56 paired urban greenspaces and natural ecosystems worldwide and combine soil C concentration and size fractionation measures with metagenomics and warming incubations. We show that surface soils in urban and natural ecosystems sustain similar C concentrations that follow comparable negative relationships with temperature. Plant productivity’s contribution to explaining soil C was higher in natural ecosystems, while in urban ecosystems, the soil microbial biomass had the greatest explanatory power. Moreover, the soil microbiome supported a faster C mineralization rate with experimental warming in urban greenspaces compared with natural ecosystems. Consequently, urban management strategies should consider the soil microbiome to maintain soil C and related ecosystem services.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Location of the 112 ecosystems surveyed in this study.
Fig. 2: SOC concentrations in urban greenspaces and adjacent natural ecosystems.
Fig. 3: Drivers of SOC concentration in urban greenspaces and adjacent natural ecosystems.
Fig. 4: Microbially driven losses in SOC under experimental warming.

Data availability

The raw data associated with this study are available in (


  1. Chien, S.-C. & Krumins, J. A. Natural versus urban global soil organic carbon stocks: a meta-analysis. Sci. Total Environ. 807, 150999 (2022).

    Article  CAS  Google Scholar 

  2. Sun, Y., Xie, S. & Zhao, S. Valuing urban green spaces in mitigating climate change: a city‐wide estimate of aboveground carbon stored in urban green spaces of China’s Capital. Glob. Change Biol. 25, 1717–1732 (2019).

    Article  Google Scholar 

  3. Bossio, D. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).

    Article  Google Scholar 

  4. Cambou, A. et al. Estimation of soil organic carbon stocks of two cities, New York City and Paris. Sci. Total Environ. 644, 452–464 (2018).

    Article  CAS  Google Scholar 

  5. Epp Schmidt, D. J. et al. Urbanization erodes ectomycorrhizal fungal diversity and may cause microbial communities to converge. Nat. Ecol. Evol. 1, 0123 (2017).

    Article  Google Scholar 

  6. Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    Article  CAS  Google Scholar 

  7. García-Palacios, P. et al. Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming. Nat. Rev. Earth Environ. 2, 507–517 (2021).

    Article  Google Scholar 

  8. Pouyat, R., Groffman, P., Yesilonis, I. & Hernandez, L. Soil carbon pools and fluxes in urban ecosystems. Environ. Pollut. 116, S107–S118 (2002).

    Article  CAS  Google Scholar 

  9. Edmondson, J. L. et al. Urban tree effects on soil organic carbon. PLoS ONE 9, e101872 (2014).

    Article  Google Scholar 

  10. Weissert, L., Salmond, J. & Schwendenmann, L. Variability of soil organic carbon stocks and soil CO2 efflux across urban land use and soil cover types. Geoderma 271, 80–90 (2016).

    Article  CAS  Google Scholar 

  11. Georgiou, K. et al. Global stocks and capacity of mineral-associated soil organic carbon. Nat. Commun. 13, 3797 (2022).

    Article  CAS  Google Scholar 

  12. Cotrufo, M. F. & Lavallee, J. M. Soil organic matter formation, persistence, and functioning: a synthesis of current understanding to inform its conservation and regeneration. Adv. Agron. 172, 1–66 (2022).

    Article  Google Scholar 

  13. Kleber, M. et al. Mineral–organic associations: formation, properties, and relevance in soil environments. Adv. Agron. 130, 1–140 (2015).

    Article  Google Scholar 

  14. Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J. & Lugato, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 12, 989–994 (2019).

    Article  CAS  Google Scholar 

  15. Plaza, C. et al. Ecosystem productivity has a stronger influence than soil age on surface soil carbon storage across global biomes. Commun. Earth Environ. 3, 233 (2022).

    Article  Google Scholar 

  16. Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Article  Google Scholar 

  17. IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  18. Scharenbroch, B., Day, S., Trammell, T. & Pouyat, R. in Urban Soils (eds Lal, R. & Stewart, B. A.) Ch. 6 (CRC Press, 2017).

  19. Crowther, T. W. et al. Sensitivity of global soil carbon stocks to combined nutrient enrichment. Ecol. Lett. 22, 936–945 (2019).

    Article  CAS  Google Scholar 

  20. Delgado-Baquerizo, M. et al. The influence of soil age on ecosystem structure and function across biomes. Nat. Commun. 11, 4721 (2020).

    Article  CAS  Google Scholar 

  21. Frostegård, Å., Bååth, E. & Tunlio, A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol. Biochem. 25, 723–730 (1993).

    Article  Google Scholar 

  22. Qin, S. et al. Temperature sensitivity of SOM decomposition governed by aggregate protection and microbial communities. Sci. Adv. 5, eaau1218 (2019).

    Article  CAS  Google Scholar 

  23. Delgado-Baquerizo, M. et al. Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Sci. Adv. 7, eabg5809 (2021).

    Article  CAS  Google Scholar 

  24. Mundim, K. C., Baraldi, S., Machado, H. G. & Vieira, F. M. Temperature coefficient (Q10) and its applications in biological systems: beyond the Arrhenius theory. Ecol. Model. 431, 109127 (2020).

    Article  Google Scholar 

  25. Wang, C. et al. The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization. ISME J. 15, 2738–2747 (2021).

    Article  CAS  Google Scholar 

  26. Harris, D., Horwáth, W. R. & van Kessel, C. Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon‐13 isotopic analysis. Soil Sci. Soc. Am. J. 65, 1853–1856 (2001).

    Article  CAS  Google Scholar 

  27. Sokol, N. W. & Bradford, M. A. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat. Geosci. 12, 46–53 (2019).

    Article  CAS  Google Scholar 

  28. Fick, S. & Hijmans, R. WorldClim 2: nouvelles surfaces climatiques de résolution spatiale de 1 km pour les zones terrestres mondiales. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  29. Lembrechts, J. J. et al. Global maps of soil temperature. Glob. Change Biol. 28, 3110–3144 (2021).

    Article  Google Scholar 

  30. Vermote, E., Justice, C., Claverie, M. & Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 185, 46–56 (2016).

    Article  Google Scholar 

  31. Zhang, L. et al. Direct and indirect impacts of urbanization on vegetation growth across the world’s cities. Sci. Adv. 8, eabo0095 (2022).

    Article  Google Scholar 

  32. Richards, D. R. & Belcher, R. N. Global changes in urban vegetation cover. Remote Sens. 12, 23 (2019).

    Article  Google Scholar 

  33. Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).

    Article  CAS  Google Scholar 

  34. Frostegård, Å., Tunlid, A. & Bååth, E. Use and misuse of PLFA measurements in soils. Soil Biol. Biochem. 43, 1621–1625 (2011).

    Article  Google Scholar 

  35. Shi, B. et al. Temporal changes in the spatial variability of soil respiration in a meadow steppe: the role of abiotic and biotic factors. Agric. Meteorol. 287, 107958 (2020).

    Article  Google Scholar 

  36. Dacal, M., Bradford, M. A., Plaza, C., Maestre, F. T. & García-Palacios, P. Soil microbial respiration adapts to ambient temperature in global drylands. Nat. Ecol. Evol. 3, 232–238 (2019).

    Article  Google Scholar 

  37. Fierer, N. et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl Acad. Sci. USA 109, 21390–21395 (2012).

    Article  CAS  Google Scholar 

  38. Fierer, N. et al. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342, 621–624 (2013).

    Article  CAS  Google Scholar 

  39. Meyer, F. et al. The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386 (2008).

    Article  CAS  Google Scholar 

  40. Oksanen, J. et al. Package ‘vegan’: community ecology. R package version 2.2-0 (2014);

  41. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013);

  42. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  43. Kunzetsova, A., Brockhoff, P. & Christensen, R. lmerTest package: tests in linear mixed effect models. J. Stat. Softw. 82, 1–26 (2017).

    Google Scholar 

  44. Menard, S. Applied Logistic Regression Analysis 2nd edn (SAGE Publications, 2001).

  45. Schermelleh-Engel, K., Moosbrugger, H. & Müller, H. Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. Methods Psychol. Res. 8, 23–74 (2003).

    Google Scholar 

  46. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Contr. 19, 716–723 (1974).

    Article  Google Scholar 

  47. Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).

    Article  CAS  Google Scholar 

  48. Feng, Y. et al. Temperature thresholds drive the global distribution of soil fungal decomposers. Glob. Change Biol. 28, 2779–2789 (2022).

    Article  Google Scholar 

  49. Fong, Y., Huang, Y., Gilbert, P. B. & Permar, S. R. chngpt: threshold regression model estimation and inference. BMC Bioinformatics 18, 454 (2017).

    Article  Google Scholar 

Download references


We thank the researchers involved in the MUSGONET project for collection of field data. This study was supported by a 2019 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation (URBANFUN), and by BES Grant Agreement No. LRB17\1019 (MUSGONET). M.D-B., P.G-P., J.D. and A.R. acknowledge support from TED2021-130908B-C41/AEI/10.13039/501100011033/Unión Europea NextGenerationEU/PRTR. M.D.-B. also acknowledges support from the Spanish Ministry of Science and Innovation for the I + D + i project PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033. M.D.-B. was also supported by a project of the Fondo Europeo de Desarrollo Regional (FEDER) and the Consejería de Transformación Económica, Industria, Conocimiento y Universidades of the Junta de Andalucía (FEDER Andalucía 2014-2020 Objetivo temático ‘01 - Refuerzo de la investigación, el desarrollo tecnológico y la innovación’) associated with the research project P20_00879 (ANDABIOMA). D.J.E. was supported by the Hermon Slade Foundation. J.P.V. thanks the Science and Engineering Research Board (SERB) (EEQ/2021/001083, SIR/2022/000626) and the Department of Science and Technology (DST), India (DST/INT/SL/P-31/2021) and Banaras Hindu Univeristy-IoE (6031)-incentive grant for financial assistance for research in plant-microbe interaction and soil microbiome. J.D. and A. Rodríguez acknowledge support from the FCT (2020.03670.CEECIND and SFRH/BDP/108913/2015, respectively), as well as from the MCTES, FSE, UE and the CFE (UIDB/04004/2021) research unit financed by FCT/MCTES through national funds (PIDDAC).

Author information

Authors and Affiliations



M.D.-B., P.G.-P., M.A.B. and C.P. conceptualized the project. M.D.-B., D.J.E., M.B., T.S.-S., Y.-R.L., F.A., S.A., A.R.B., F.B., J.L.B.-P., J.D., J.J.G., J.G.I., T.G., T.P.M., D.K.J., T.U.N., G.F.P.-B., A. Rey, A. Rodriguez, C.S., A.L.T., W.S., P.T., J.P.V., L.W., J.W., T.Y., E.Z., X.Z., X.-Q.Z. and C.P. developed the methodology. M.D.-B., P.G.-P., M.A.B., D.J.E., M.B., T.S.-S., Y.-R.L., F.A., S.A., A.R.B., F.B., J.L.B.-P., J.D., J.J.G., J.G.I., T.G., T.P.M., D.K.J., T.U.N., G.F.P.-B., A. Rey, A. Rodriguez, C.S., A.L.T., W.S., P.T., J.P.V., L.W., J.W., T.Y., E.Z., X.Z., X.-Q.Z. and C.P. conducted the investigation. M.D.-B., M.B. and C.P. performed visualization. M.D.-B., D.J.E., C.P. and J.P.V. acquired funding. M.D.-B. administered and supervised the project. M.D.-B., P.G.-P., M.A.B., C.P. and D.J.E. wrote the original draft. M.D.-B., P.G.-P., M.A.B., D.J.E., M.B., T.S.-S., Y.-R.L., F.A., S.A., A.R.B., F.B., J.L.B.-P., J.D., J.J.G., J.G.I., T.G., T.P.M., D.K.J., T.U.N., G.F.P.-B., A. Rey, A. Rodriguez, C.S., A.L.T., W.S., P.T., J.P.V., L.W., J.W., T.Y., E.Z., X.Z., X.-Q.Z. and C.P. reviewed and edited the paper.

Corresponding author

Correspondence to Manuel Delgado-Baquerizo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Jennifer Adams Krumins, Victor Allory, Claudia Canedoli and Tae Kyung Yoon for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Tables 1–7.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado-Baquerizo, M., García-Palacios, P., Bradford, M.A. et al. Biogenic factors explain soil carbon in paired urban and natural ecosystems worldwide. Nat. Clim. Chang. 13, 450–455 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing