Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Desert dunes transformed by end-of-century changes in wind climate

Abstract

Sand dunes in arid regions are conspicuous mobile landforms that require adaptation and mitigation strategies to protect human infrastructure and economic assets from encroachment, and play a substantial role in desertification and atmospheric dust emissions. Here we show how the shape, migration speed and direction of mobile desert dunes globally are projected to change by 2100, in response to sand-moving wind regime shifts associated with climate change under the shared socio-economic pathway SSP5-8.5 (SSP, shared socio-economic pathway) scenario. We find transformations in dune dynamics for many sand seas and dune fields across the Sahara, The Horn of Africa, the Southern Arabian Peninsula, South Asia, China and Australia—as well as an increased potential for sand sea expansion and reactivation of dormant dune fields—linked to climate change alterations in the Hadley circulation, extra-tropical cyclone activity and monsoon systems. These projected changes will affect planning for and management of dune encroachment on transportation infrastructure, industry and urban development in desert regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phase diagram of desert dune types as a function of directional variability in sand drift.
Fig. 2: Changes in sand drift regime parameters in the global arid zones predicted for the end of this century.
Fig. 3: Impacts of changing sand drift regime on desert dunes.
Fig. 4: Seasonal changes in sand drift due to altering atmospheric circulation patterns.

Similar content being viewed by others

Data availability

The source data analysed in this study are publicly available at the following sites: HadGEM3-GC31-MM in the CMIP6 repository from the World Climate Research Programme (https://esgf-index1.ceda.ac.uk/search/cmip6-ceda/) and ERA5 hourly data on single levels from 1979 to present from the Climate Data Store—Copernicus Climate Change Service (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview). The datasets of predicted sand drift regime parameters generated in this study are available in the Supplementary Information as Google Earth layers. The datasets of the arid zone mobile dune survey and the sand drift regime parameters are further available in the repository https://doi.org/10.18742/c.6194551.

Code availability

Data processing and analysis scripts (written for Matlab) are available in the repository https://doi.org/10.18742/c.6194551.

References

  1. Wiggs, G. F. Desert dune processes and dynamics. Prog. Phys. Geog. 25, 53–79 (2001).

    Article  Google Scholar 

  2. Hayward, R. K., Fenton, L. K. & Titus, T. N. Mars Global Digital Dune Database (MGD3): global dune distribution and wind pattern observations. Icarus 230, 38–46 (2014).

    Article  Google Scholar 

  3. Wasson, R. J. & Hyde, R. Factors determining desert dune type. Nature 304, 337–339 (1983).

    Article  Google Scholar 

  4. Lorenz, R. D. et al. The sand seas of Titan: Cassini RADAR observations of longitudinal dunes. Science 312, 724–727 (2006).

    Article  CAS  Google Scholar 

  5. Radebaugh, J. et al. Dunes on Titan observed by Cassini RADAR. Icarus 194, 690–703 (2008).

    Article  Google Scholar 

  6. Ahmady-Birgani, H., McQueen, K. G., Moeinaddini, M. & Naseri, H. Sand dune encroachment and desertification processes of the Rigboland Sand Sea, Central Iran. Sci. Rep. 7, 1–10. (2017).

    Article  CAS  Google Scholar 

  7. Bruno, L., Horvat, M. & Raffaele, L. Windblown sand along railway infrastructures: a review of challenges and mitigation measures. J. Wind Eng. Ind. Aerodyn. 177, 340–365 (2018).

    Article  Google Scholar 

  8. Gad, A. Sand dune distribution and related impacts on agricultural resources of Sinai Peninsula, Egypt, using integrated remote sensing-GIS techniques. Global Adv Res. J. Agric. Sci. 5, 42–50 (2016).

    Google Scholar 

  9. Amin, A. & Seif, E. S. S. A. Environmental hazards of sand dunes, South Jeddah, Saudi Arabia: an assessment and mitigation geotechnical study. Earth Syst. Environ. 3, 173–188 (2019).

    Article  Google Scholar 

  10. Ding, C., Feng, G., Liao, M. & Zhang, L. Change detection, risk assessment and mass balance of mobile dune fields near Dunhuang Oasis with optical imagery and global terrain datasets. Int. J. Digital Earth 13, 1604–1623 (2020).

    Article  Google Scholar 

  11. Belsky, A. J. & Amundson, R. G. Sixty years of successional history behind a moving sand dune near Olduvai Gorge, Tanzania. Biotropica 18, 231–235 (1986).

    Article  Google Scholar 

  12. Lam, D. K., Remmel, T. K. & Drezner, T. D. Tracking desertification in California using remote sensing: a sand dune encroachment approach. Remote Sens. 3, 1–13 (2011).

    Article  Google Scholar 

  13. Grini, A. & Zender, C. S. Roles of saltation, sandblasting, and wind speed variability on mineral dust aerosol size distribution during the Puerto Rican Dust Experiment (PRIDE). J. Geophys. Res. Atmos. 109, D07202 (2004).

    Article  Google Scholar 

  14. Sweeney, M. R., Forman, S. L. & McDonald, E. V. Contemporary and future dust sources and emission fluxes from gypsum- and quartz-dominated eolian systems, New Mexico and Texas, USA. Geology 50, 356–360 (2022).

    Article  CAS  Google Scholar 

  15. Harrison, S. P., Kohfeld, K. E., Roelandt, C. & Claquin, T. The role of dust in climate changes today, at the last glacial maximum and in the future. Earth Sci. Rev. 54, 43–80 (2001).

    Article  CAS  Google Scholar 

  16. Thomas, D. S., Knight, M. & Wiggs, G. F. Remobilization of southern African desert dune systems by twenty-first century global warming. Nature 435, 1218–1221 (2005).

    Article  CAS  Google Scholar 

  17. Ashkenazy, Y., Yizhaq, H. & Tsoar, H. Sand dune mobility under climate change in the Kalahari and Australian deserts. Clim. Change 112, 901–923 (2012).

    Article  Google Scholar 

  18. Yan, N. & Baas, A. C. W. Transformation of parabolic dunes into mobile barchans triggered by environmental change and anthropogenic disturbance. Earth Surf. Process. Landf. 43, 1001–1018 (2018).

    Article  Google Scholar 

  19. Zeng, N. & Yoon, J. Expansion of the world’s deserts due to vegetation‐albedo feedback under global warming. Geophys. Res. Lett. 36, L17401 (2009).

    Article  Google Scholar 

  20. Construction of new railway in China's Xinjiang could finish early. Global Times (27 September 2020); https://www.globaltimes.cn/content/1202263.shtml

  21. Jamali, A. A., Zarekia, S. & Randhir, T. O. Risk assessment of sand dune disaster in relation to geomorphic properties and vulnerability in the Saduq-Yazd Erg. Appl. Ecol. Environ. Res. 16, 579–590 (2018).

    Article  Google Scholar 

  22. Pradhan, B., Moneir, A. A. A. & Jena, R. Sand dune risk assessment in Sabha region, Libya using Landsat 8, MODIS, and Google Earth Engine images. Geomat. Nat. Hazards Risk 9, 1280–1305 (2018).

    Article  Google Scholar 

  23. Salman, A. B., Howari, F. M., El-Sankary, M. M., Wali, A. M. & Saleh, M. M. Environmental impact and natural hazards on Kharga Oasis monumental sites, Western Desert of Egypt. J. Afr. Earth. Sci. 58, 341–353 (2010).

    Article  Google Scholar 

  24. Raffaele, L. & Bruno, L. Windblown sand action on civil structures: definition and probabilistic modelling. Eng. Struct. 178, 88–101 (2019).

    Article  Google Scholar 

  25. Fryberger, S. G. and Dean, G. in A Study of Global Sand Seas (ed. McKee, E. D.) Professional Paper 1052, 137–169 (US Government Printing Office Washington, 1979).

  26. Yizhaq, H., Xu, Z. & Ashkenazy, Y. The effect of wind speed averaging time on the calculation of sand drift potential: new scaling laws. Earth Planet. Sci. Lett. 544, 116373 (2020).

    Article  CAS  Google Scholar 

  27. Bullard, J. E. A note on the use of the ‘Fryberger method’ for evaluating potential sand transport by wind. J. Sediment. Res. 67, 499–501 (1997).

    Article  Google Scholar 

  28. Elbelrhiti, H. Initiation and early development of barchan dunes: a case study of the Moroccan Atlantic Sahara desert. Geomorphology 138, 181–188 (2012).

    Article  Google Scholar 

  29. Kocurek, G., Townsley, M., Yeh, E., Havholm, K. G. & Sweet, M. L. Dune and dune-field development on Padre Island, Texas, with implications for interdune deposition and water-table-controlled accumulation. J. Sediment. Res. 62, 622–635 (1992).

    Google Scholar 

  30. Goudie, A. S. Global barchans: a distributional analysis. Aeolian Res. 44, 100591 (2020).

    Article  Google Scholar 

  31. Muhs, D. R. & Maat, P. B. The potential response of eolian sands to greenhouse warming and precipitation reduction on the Great Plains of the USA. J. Arid. Environ. 25, 351–361 (1993).

    Article  Google Scholar 

  32. IPCC Special Report on Climate Change and Land (eds Shukla, P. R. et al.) Ch. 3 (WMO, 2019).

  33. Yizhaq, H., Ashkenazy, Y. & Tsoar, H. Why do active and stabilized dunes coexist under the same climatic conditions? Phys. Rev. Lett. 98, 188001 (2007).

    Article  Google Scholar 

  34. Vermeesch, P. & Drake, N. Remotely sensed dune celerity and sand flux measurements of the world’s fastest barchans (Bodele, Chad). Geophys. Res. Lett. 35, 24 (2008).

    Article  Google Scholar 

  35. Hunter, R. E., Richmond, B. M. & Rho Alpha, T. A. U. Storm-controlled oblique dunes of the Oregon coast. Geol. Soc. Am. Bull. 94, 1450–1465 (1983).

    Article  Google Scholar 

  36. Werner, B. T. & Kocurek, G. Bed-form dynamics: does the tail wag the dog? Geology 25, 771–774 (1997).

    Article  Google Scholar 

  37. Parteli, E. J., Durán, O., Tsoar, H., Schwämmle, V. & Herrmann, H. J. Dune formation under bimodal winds. Proc. Natl Acad. Sci. USA 106, 22085–22089 (2009).

    Article  CAS  Google Scholar 

  38. Reffet, E., Du Pont, S. C., Hersen, P. & Douady, S. Formation and stability of transverse and longitudinal sand dunes. Geology 38, 491–494 (2010).

    Article  Google Scholar 

  39. Hanoch, G., Yizhaq, H. & Ashkenazy, Y. Modeling the bistability of barchan and parabolic dunes. Aeolian Res. 35, 9–18 (2018).

    Article  Google Scholar 

  40. Cook, B. I. et al. Twenty‐first century drought projections in the CMIP6 forcing scenarios. Earth’s Future 8, e2019EF001461 (2020).

    Article  Google Scholar 

  41. Almazroui, M., Saeed, S., Saeed, F., Islam, M. N. & Ismail, M. Projections of precipitation and temperature over the South Asian countries in CMIP6. Earth Syst. Environ. 4, 297–320 (2020).

    Article  Google Scholar 

  42. Grise, K. M. & Davis, S. M. Hadley cell expansion in CMIP6 models. Atmos. Chem. Phys. 20, 5249–5268 (2020).

    Article  CAS  Google Scholar 

  43. Raible, C. C. et al. Extratropical cyclone statistics during the last millennium and the 21st century. Climate 14, 1499–1514 (2018).

    Google Scholar 

  44. Endo, H., Kitoh, A. & Ueda, H. A unique feature of the Asian summer monsoon response to global warming: the role of different land–sea thermal contrast change between the lower and upper troposphere. Sola 14, 57–63 (2018).

    Article  Google Scholar 

  45. Whetton, P. et al. Climate Change in Australia: Projections for Australia’s NRM Regions Technical Report (CSIRO and Bureau of Meteorology, 2015).

  46. Gunn, A., East, A. & Jerolmack, D. J. 21st-century stagnation in unvegetated sand-sea activity. Nat. Commun. 13, 1–7 (2022).

    Article  Google Scholar 

  47. Pryor, S. C., Barthelmie, R. J. & Schoof, J. T. Past and future wind climates over the contiguous USA based on the North American Regional Climate Change Assessment Program model suite. J. Geophys. Res. Atmos. 117, D19119 (2012).

    Article  Google Scholar 

  48. Parteli, E. J. R. in Treatise on Geomorphology 2nd edn, Vol. 7 (ed. Shroder, J. F.) 20–52 (Elsevier, 2022).

  49. Douville, H. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1055–1210 (Cambridge Univ. Press, 2021).

  50. Williams, K. et al. The Met Office Global Coupled model 3.0 and 3.1 (GC3.0 & GC3.1) configurations. J. Adv. Model. Earth Sy. 10, 357–380 (2018).

    Article  Google Scholar 

  51. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  52. Walters, D. et al. The Met Office unified model global atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geosci. Model Dev. 12, 1909–1963 (2019).

    Article  CAS  Google Scholar 

  53. Lun, I. Y. & Lam, J. C. A study of Weibull parameters using long-term wind observations. Renew. Energy 20, 145–153 (2000).

    Article  Google Scholar 

  54. Lettau, K. and Lettau, H. H. in Exploring the World’s Driest Climate (eds Lettau, K. and Lettau, H. H.) 110–147 (Univ. Wisconsin, 1978).

  55. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  Google Scholar 

  56. Molina, M. O., Gutiérrez, C. & Sánchez, E. Comparison of ERA5 surface wind speed climatologies over Europe with observations from the HadISD dataset. Int. J. Climatol. 41, 4864–4878 (2021).

    Article  Google Scholar 

  57. Michel, S. et al. Comparing dune migration measured from remote sensing with sand flux prediction based on weather data and model, a test case in Qatar. Earth Planet. Sci. Lett. 497, 12–21 (2018).

    Article  CAS  Google Scholar 

  58. Richter, I. & Tokinaga, H. An overview of the performance of CMIP6 models in the tropical Atlantic: mean state, variability, and remote impacts. Clim. Dyn. 55, 2579–2601 (2020).

    Article  Google Scholar 

  59. Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data 5, 1802 (2018).

    Article  Google Scholar 

  60. Wiggs, G. F. S. in Treatise on Geomorphology (ed. Shroder, J.) Ch. 11.11 (Academic Press, 2013).

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.C.W.B. and L.A.D. conceived and designed the study, and collected and analysed the data. The manuscript was written and prepared by A.C.W.B.

Corresponding author

Correspondence to Andreas C. W. Baas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Ryan Ewing, Eric Parteli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information A–D.

Supplementary Data 1

Google Earth Layers of data as.kml files.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baas, A.C.W., Delobel, L.A. Desert dunes transformed by end-of-century changes in wind climate. Nat. Clim. Chang. 12, 999–1006 (2022). https://doi.org/10.1038/s41558-022-01507-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-022-01507-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing