Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evapotranspiration frequently increases during droughts


Changes in evapotranspiration (ET) affect water availability and ecosystem health. Higher evaporative demand during drought acts to increase ET, but droughts also reduce the moisture supply necessary for ET, limiting predictions of even the sign of ET anomalies. Drought-driven increases in ET (\({\rm{ET}}_{{\rm{drought}}}^ +\)) are of particular concern because they quickly deplete water resources, causing flash droughts and acute stress on ecosystems. Here, using a water balance approach, we show that \({\rm{ET}}_{{\rm{drought}}}^ +\) is globally widespread, occurring in 44.4% of drought months. The sign of ET’s drought response depends most on the magnitude of precipitation and total water storage anomalies, rather than its location. The Coupled Model Intercomparison Project Phase 6 Earth system models underestimate the \({\rm{ET}}_{{\rm{drought}}}^ +\) probability by nearly one-half, and more so in drier regions, primarily due to missing representations of soil structure effects on soil evaporation, as well as incorrectly parameterized plant and soil traits. These processes should be prioritized to reduce model uncertainties in the water–energy–food nexus.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: \(P({\rm{ET}}_{{\rm{drought}}}^ + )\) comparison between our observations and CMIP6 ESM simulations.
Fig. 2: Distribution of the underestimation of \(P({\rm{ET}}_{{\rm{drought}}}^ + )\) in ESMs.
Fig. 3: Variable importance for \(P({\rm{ET}}_{{\rm{drought}}}^ + )\) in our observations.
Fig. 4: Responses of \(P({\rm{ET}}_{{\rm{drought}}}^ + )\) to climate and vegetation properties.

Data availability

GRACE and GRACE-FO TWS data are available from the NASA JPL ( The GPCP version 2.3 combined precipitation dataset is available at ERA5 reanalysis is available at MODIS LAI data are available at MODIS land cover data are available at Runoff data are available at CMIP6 model outputs are available at The FLUXNET2015 dataset is available at Elevation data are available at Ecosystem rooting depth data are available at Groundwater table depth data are available at The data necessary to reproduce the main results are provided at (ref. 61).

Code availability

The computer code necessary to reproduce the main results is provided at (ref. 61).


  1. Ault, T. R. On the essentials of drought in a changing climate. Science 368, 256–260 (2020).

    Article  CAS  Google Scholar 

  2. Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).

    Article  CAS  Google Scholar 

  3. Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).

    Article  CAS  Google Scholar 

  4. Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).

    Article  CAS  Google Scholar 

  5. Goulden, M. L. & Bales, R. C. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12, 632–637 (2019).

    Article  CAS  Google Scholar 

  6. Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).

    Article  CAS  Google Scholar 

  7. Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).

    Article  CAS  Google Scholar 

  8. Short Gianotti, D. J., Rigden, A. J., Salvucci, G. D. & Entekhabi, D. Satellite and station observations demonstrate water availability’s effect on continental-scale evaporative and photosynthetic land surface dynamics. Water Resour. Res. 55, 540–554 (2019).

    Article  Google Scholar 

  9. Anderegg, W. R. L., Trugman, A. T., Bowling, D. R., Salvucci, G. & Tuttle, S. E. Plant functional traits and climate influence drought intensification and land–atmosphere feedbacks. Proc. Natl Acad. Sci. USA 116, 14071–14076 (2019).

    Article  CAS  Google Scholar 

  10. Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).

    Article  CAS  Google Scholar 

  11. Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Chang. 6, 1023–1027 (2016).

    Article  CAS  Google Scholar 

  12. Liu, Y., Kumar, M., Katul, G. G., Feng, X. & Konings, A. G. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim. Chang. 10, 691–695 (2020).

    Article  CAS  Google Scholar 

  13. Gupta, A., Rico-Medina, A. & Caño-Delgado, A. I. The physiology of plant responses to drought. Science 368, 266–269 (2020).

    Article  CAS  Google Scholar 

  14. Wolf, S. et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl Acad. Sci. USA 113, 5880–5885 (2016).

    Article  CAS  Google Scholar 

  15. Teuling, A. J. et al. Evapotranspiration amplifies European summer drought. Geophys. Res. Lett. 40, 2071–2075 (2013).

    Article  Google Scholar 

  16. Mastrotheodoros, T. et al. More green and less blue water in the Alps during warmer summers. Nat. Clim. Chang. 10, 155–161 (2020).

    Article  Google Scholar 

  17. Peterson, T. J., Saft, M., Peel, M. C. & John, A. Watersheds may not recover from drought. Science 372, 745–749 (2021).

    Article  CAS  Google Scholar 

  18. Helbig, M. et al. Increasing contribution of peatlands to boreal evapotranspiration in a warming climate. Nat. Clim. Chang. 10, 555–560 (2020).

    Article  CAS  Google Scholar 

  19. Massmann, A., Gentine, P. & Lin, C. When does vapor pressure deficit drive or reduce evapotranspiration? J. Adv. Model. Earth Syst. 11, 3305–3320 (2019).

    Article  Google Scholar 

  20. Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).

    Article  Google Scholar 

  21. Orth, R. & Destouni, G. Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe. Nat. Commun. 9, 3602 (2018).

    Article  Google Scholar 

  22. Pendergrass, A. G. et al. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Chang. 10, 191–199 (2020).

    Article  Google Scholar 

  23. Chu, H., Baldocchi, D. D., John, R., Wolf, S. & Reichstein, M. Fluxes all of the time? A primer on the temporal representativeness of FLUXNET. J. Geophys. Res. Biogeosci. 122, 289–307 (2017).

    Article  Google Scholar 

  24. Ukkola, A. M. et al. Land surface models systematically overestimate the intensity, duration and magnitude of seasonal-scale evaporative droughts. Environ. Res. Lett. 11, 104012 (2016).

    Article  Google Scholar 

  25. Trugman, A. T., Medvigy, D., Mankin, J. S. & Anderegg, W. R. L. Soil moisture stress as a major driver of carbon cycle uncertainty. Geophys. Res. Lett. 45, 6495–6503 (2018).

    Article  Google Scholar 

  26. De Kauwe, M. G. et al. Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic–xeric gradient in Europe. Biogeosciences 12, 7503–7518 (2015).

    Article  Google Scholar 

  27. Dong, J., Lei, F. & Crow, W. T. Land transpiration–evaporation partitioning errors responsible for modeled summertime warm bias in the central United States. Nat. Commun. 13, 336 (2022).

    Article  CAS  Google Scholar 

  28. Kennedy, D. et al. Implementing plant hydraulics in the Community Land Model, version 5. J. Adv. Model. Earth Syst. 11, 485–513 (2019).

    Article  Google Scholar 

  29. Novick, K. A. et al. Confronting the water potential information gap. Nat. Geosci. 15, 158–164 (2022).

    Article  CAS  Google Scholar 

  30. Liu, Y., Holtzman, N. M. & Konings, A. G. Global ecosystem-scale plant hydraulic traits retrieved using model–data fusion. Hydrol. Earth Syst. Sci. 25, 2399–2417 (2021).

    Article  CAS  Google Scholar 

  31. Lin, Y.-S. et al. Optimal stomatal behaviour around the world. Nat. Clim. Chang. 5, 459–464 (2015).

    Article  CAS  Google Scholar 

  32. Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).

    Article  CAS  Google Scholar 

  33. Anderegg, W. R. L. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).

    Article  CAS  Google Scholar 

  34. Lehmann, P., Merlin, O., Gentine, P. & Or, D. Soil texture effects on surface resistance to bare-soil evaporation. Geophys. Res. Lett. 45, 10398–10405 (2018).

    Article  Google Scholar 

  35. Fatichi, S. et al. Soil structure is an important omission in Earth System Models. Nat. Commun. 11, 522 (2020).

    Article  CAS  Google Scholar 

  36. McCormick, E. L. et al. Widespread woody plant use of water stored in bedrock. Nature 597, 225–229 (2021).

    Article  CAS  Google Scholar 

  37. Baldocchi, D., Ma, S. & Verfaillie, J. On the inter- and intra-annual variability of ecosystem evapotranspiration and water use efficiency of an oak savanna and annual grassland subjected to booms and busts in rainfall. Glob. Chang. Biol. 27, 359–375 (2021).

    Article  CAS  Google Scholar 

  38. Condon, L. E., Atchley, A. L. & Maxwell, R. M. Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat. Commun. 11, 873 (2020).

    Article  CAS  Google Scholar 

  39. Maxwell, R. M. & Condon, L. E. Connections between groundwater flow and transpiration partitioning. Science 353, 377–380 (2016).

    Article  CAS  Google Scholar 

  40. Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).

    Article  CAS  Google Scholar 

  41. Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).

    Article  CAS  Google Scholar 

  42. Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).

    Article  CAS  Google Scholar 

  43. Zhao, M. et al. Ecological restoration impact on total terrestrial water storage. Nat. Sustain. 4, 56–62 (2021).

    Article  Google Scholar 

  44. Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 6, 1019–1022 (2016).

    Article  Google Scholar 

  45. Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).

    Article  CAS  Google Scholar 

  46. Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).

    Article  CAS  Google Scholar 

  47. Zhao, M., Geruo, A., Velicogna, I. & Kimball, J. S. A global gridded dataset of GRACE drought severity index for 2002–14: comparison with PDSI and SPEI and a case study of the Australia Millennium Drought. J. Hydrometeorol. 18, 2117–2129 (2017).

    Article  Google Scholar 

  48. Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120, 2648–2671 (2015).

    Article  Google Scholar 

  49. Wiese, D. N., Landerer, F. W. & Watkins, M. M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour. Res. 52, 7490–7502 (2016).

    Article  Google Scholar 

  50. Adler, R. F. et al. The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 4, 1147–1167 (2003).

    Article  Google Scholar 

  51. Sun, Q. et al. A review of global precipitation data sets: data sources, estimation, and intercomparisons. Rev. Geophys. 56, 79–107 (2018).

    Article  Google Scholar 

  52. Gebremichael, M. et al. Error uncertainty analysis of GPCP monthly rainfall products: a data-based simulation study. J. Appl. Meteorol. 42, 1837–1848 (2003).

    Article  Google Scholar 

  53. Rodell, M. et al. Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett. 31, L20504 (2004).

    Article  Google Scholar 

  54. Major River Basins of the World (Global Runoff Data Centre, 2020).

  55. Pascolini-Campbell, M. A., Reager, J. T. & Fisher, J. B. GRACE-based mass conservation as a validation target for basin-scale evapotranspiration in the contiguous United States. Water Resour. Res. 56, e2019WR026594 (2020).

    Article  Google Scholar 

  56. Fekete, B. M., Vörösmarty, C. J. & Grabs, W. High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem. Cycles 16, 15-1–15-10 (2002).

    Article  Google Scholar 

  57. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  58. Myneni, R., Knyazikhin, Y. & Park, T (ed. NASA EOSDIS Land Processes DAAC) (2021).

  59. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  Google Scholar 

  60. Sulla-Menashe, D. & Friedl, M. A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product (US Geological Survey, 2018).

  61. Zhao, M., Aa, G., Liu, Y. & Konings, A. Evapotranspiration frequently increases during droughts. Zenodo (2022).

Download references


We are grateful to D. Kennedy for helpful comments on the CMIP6 model results. M.Z. and A.G.K. were supported by NASA Terrestrial Ecology award 80NSSC18K0715 through the New Investigator Program and by the NASA Modeling, Analysis, and Prediction program under award 80NSSC21K1523.

Author information

Authors and Affiliations



A.G.K. and M.Z. conceived of the study. M.Z. conducted the analyses with A.G.K. and G.A. M.Z. and A.G.K. wrote the initial draft of the manuscript. All authors edited the manuscript.

Corresponding author

Correspondence to Meng Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Sanaa Hobeichi, Justin Mankin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Number of analyzed drought months for each year.

Number of drought months that are detected using our drought definition for each year during 2003–2020. Basemap from Natural Earth (

Extended Data Fig. 2 The robustness of the runoff assumption.

(a) Spatial distribution of 185 analyzed hydrological basins. Colors in the map differentiate basins. (b) The scatterplot of ET′ (calculated using a complete water balance) and \(P\prime - \frac{{dTWS}}{{dt}}\prime\) across all basin-drought months. The number in squared box represents the count of basin-month points in each quadrant. The accuracy of using the sign of \(P\prime - \frac{{dTWS}}{{dt}}\prime\) to approximate the sign of ET′ is (1030 + 1384)/(1030 + 261 + 1348 + 23) ≈ 0.9. Subplot (c) is like (b) but for basin-drought months with ZET > 0.25. (d) Accuracy of each basin’s determination of the sign of ET′ when neglecting runoff in the calculation of ET′. Each point is one of the basins shown in (a). The color of each point represents the average uncertainty of the ET′ estimate, calculated using Eq. (4) of the Methods (the same calculation as performed at the mascon-scale). The vertical line represents the area of a mascon. Basemap from Natural Earth (

Extended Data Fig. 3 The ET anomaly error is dominated by the random error.

The frequency distribution of the ratio between ET’ random error (σET) and ET’ total observational uncertainty (\(\sqrt {\sigma _{{{{\mathrm{ET}}}}}^2 + |{{{\mathrm{R}}}}\prime |^2}\)) for 2662 basin-drought months across 185 hydrological basins with GRDC data. High values of the x-axis suggest that the total error in our water-balance estimate of ET’ is driven primarily by random errors in the ET estimates propagated from uncertainties in input P, \(\frac{{dTWS}}{{dt}}\), and R, rather than the propagated bias derived from systematically neglecting an R′ that has non-zero mean. Thus, high values of the ratio shown on the x-axis justify the assumption to neglect bias from R′ when propagating all error sources to the estimates of ET′.

Extended Data Fig. 4 \(P({\rm{ET}}_{{\rm{drought}}}^ + )\) error.

Standard error of \(P(ET_{drought}^ + )\). Inset shows the probability density function of each location’s \(P(ET_{drought}^ + )\) standard error across the globe. Basemap from Natural Earth (

Extended Data Fig. 5 Ground-level observational analyses of \(P(ET_{drought}^ + )\).

(a) Spatial distribution of the 36 FLUXNET2015 sites used. (b) The frequency distribution of \(P(ET_{drought}^ + )\) of these sites. Basemap from Natural Earth (

Extended Data Fig. 6 Climate of observed and model-simulated drought events.

Kernel density estimate of the joint probability distribution of ZTWS and ZP for our observations and CMIP6 ESMs.

Extended Data Fig. 7 Using PFT-averages for plant traits does not significantly change the distribution of \(P(ET_{drought}^ + )\).

Comparison between the constrained trait model run and the PFT-wide average trait run. Corresponding dots on the x-axis represents the global average value of \(P(ET_{drought}^ + )\) for each estimate.

Extended Data Fig. 8 Soil structure effect on bare-soil evaporation and plant transpiration.

(a–c) The probability of ET, bare-soil evaporation (E), and transpiration (T) increase during droughts as a function of the aridity index, respectively. (d-f) are similar to (a-c) but as a function of the LAImax. We calculated \(P(E_{drought}^ + )\) and \(P\left( {T_{drought}^ + } \right)\) in the same way as \(P(ET_{drought}^ + )\). That is, each is calculated as the number of drought months with positive E (or T) anomalies divided by the total number of drought months at each grid cell.

Extended Data Fig. 9 Drought intensity effect on \({{{\boldsymbol{P}}}}({{{\boldsymbol{ET}}}}_{{{{\boldsymbol{drought}}}}}^ + )\).

The kernel density estimation of \(P(ET_{drought}^ + )\) as a function of drought intensity (ZP and ZTWS).

Extended Data Fig. 10 Variable importance comparison between observations and ESMs.

Normalized variable importance in observation-derived random forests (bars) and ESM-derived random forests (colored dots). Blue color bars represent drought-specific variables and green color bars represent geographic variables. Colored dots follow the same color scheme of main Fig. 2.

Supplementary information

Supplementary Information

Supplementary Tables 1–3 and Fig. 1.

Reporting Summary

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., A, G., Liu, Y. et al. Evapotranspiration frequently increases during droughts. Nat. Clim. Chang. 12, 1024–1030 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing