Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dryland productivity under a changing climate

Subjects

Abstract

Understanding dryland dynamics is essential to predict future climate trajectories. However, there remains large uncertainty on the extent to which drylands are expanding or greening, the drivers of dryland vegetation shifts, the relative importance of different hydrological processes regulating ecosystem functioning, and the role of land-use changes and climate variability in shaping ecosystem productivity. We review recent advances in the study of dryland productivity and ecosystem function and examine major outstanding debates on dryland responses to environmental changes. We highlight often-neglected uncertainties in the observation and prediction of dryland productivity and elucidate the complexity of dryland dynamics. We suggest prioritizing holistic approaches to dryland management, accounting for the increasing climatic and anthropogenic pressures and the associated uncertainties.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Global dryland distributions, dryland vegetation greenness and dryland productivity.
Fig. 2: Global dryland land use and land-use changes.
Fig. 3: The key drivers and major uncertainties of dryland dynamics.
Fig. 4: Global dryland vegetation trends.
Fig. 5: Cropland gain and loss between 2003 and 2019 in global drylands.
Fig. 6: Dryland productivity modelling uncertainties.

Data availability

The advanced very high-resolution radiometer GIMMS-NDVI3g is available at https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v0. Global Land Surface Satellite (GLASS) LAI can be obtained from http://www.glass.umd.edu/Download.html. The aridity index dataset is available at https://cgiarcsi.community/data/global-aridity-and-pet-database/. Moderate-resolution imaging spectroradiometer (MODIS) based EVI and GPP datasets are available from the NASA Land Processes Distributed Active Archive Center at https://lpdaac.usgs.gov. The MODIS NPP dataset is available from https://lpdaac.usgs.gov/products/mod17a3hgfv006. Ku-band VOD datasets are available from https://zenodo.org/record/2575599#.XyLqfLdME0M. European Space Agency- (ESA-) based land-use/land-cover product is available from https://www.esa-landcover-cci.org/. Light response function- (LRF-) based GPP data are available from https://doi.org/10.17894/ucph.b2d7ebfb-c69c-4c97-bee7-562edde5ce66. Light-use efficiency model- (EC-LUE-) based GPP data can be obtained from https://doi.org/10.6084/m9.figshare.8942336.v3. Eddy covariance flux tower data are available for SW US sites from the AmeriFlux database (http://ameriflux.lbl.gov) and for Australian sites from the FLUXNET 2015 database (https://fluxnet.org/data/fluxnet2015-dataset/). More information on the TRENDY MIP and related simulations is available at https://sites.exeter.acuk/trendy/.

References

  1. Schimel, D. S. Drylands in the Earth system. Science 327, 418–419 (2010).

    Article  CAS  Google Scholar 

  2. Whitford, W. G. Ecology of Desert Systems (Academic Press, 2002).

  3. D’Odorico, P., Porporato, A. & Runyan, C. W. Dryland Ecohydrology Vol. 9 (Springer, 2019). A comprehensive introduction to dryland ecohydrology.

  4. Lal, R. Carbon cycling in global drylands. Curr. Clim. Change Rep. 5, 221–232 (2019).

    Article  Google Scholar 

  5. Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015). Illustrates the role drylands play in determining the variability and long-term trend of the terrestrial CO2 sink.

    Article  Google Scholar 

  6. Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014). Illustrates the role drylands play in determining the variability of the terrestrial CO2 sink.

  7. Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 47, 215–237 (2016). A comprehensive review of dryland structure and functioning.

    Article  Google Scholar 

  8. Wang, L., Kaseke, K. F. & Seely, M. K. Effects of non-rainfall water inputs on ecosystem functions. WIREs Water 4, e1179 (2017). Highlights the often-ignored role of non-rainfall water inputs to dryland ecosystem dynamics.

    Article  Google Scholar 

  9. Li, C. et al. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2, 858–873 (2021).

    Article  Google Scholar 

  10. Thornton, P. K., Ericksen, P. J., Herrero, M. & Challinor, A. J. Climate variability and vulnerability to climate change: a review. Glob. Change Biol. 20, 3313–3328 (2014).

    Article  Google Scholar 

  11. IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).

  12. Gonsamo, A. et al. Greening drylands despite warming consistent with carbon dioxide fertilization effect. Glob. Change Biol. 27, 3336–3349 (2021).

    Article  Google Scholar 

  13. Kaptué, A. T., Prihodko, L. & Hanan, N. P. On regreening and degradation in Sahelian watersheds. Proc. Natl Acad. Sci. USA 112, 12133–12138 (2015).

    Article  Google Scholar 

  14. Brookshire, E. J., Stoy, P. C., Currey, B. & Finney, B. The greening of the Northern Great Plains and its biogeochemical precursors. Glob. Change Biol. 26, 5404–5413 (2020).

    Article  Google Scholar 

  15. Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).

    Article  CAS  Google Scholar 

  16. Ravi, S. et al. Biological invasions and climate change amplify each other’s effects on dryland degradation. Glob. Change Biol. 28, 285–295 (2022).

    Article  CAS  Google Scholar 

  17. Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere https://doi.org/10.1890/ES15-00203.1 (2015).

  18. Yu, K. et al. The competitive advantage of a constitutive CAM species over a C4 grass species under drought and CO2 enrichment. Ecosphere 10, e02721 (2019).

    Article  Google Scholar 

  19. Fensholt, R. et al. in Remote Sensing Time Series (eds Kuenzer, C. et al.) 183–292 (Springer, 2015).

  20. Andela, N., Liu, Y., Van Dijk, A., De Jeu, R. & McVicar, T. Global changes in dryland vegetation dynamics (1988-2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data. Biogeosciences 10, 6657–6676 (2013).

    Article  Google Scholar 

  21. Lu, X., Wang, L. & McCabe, M. F. Elevated CO2 as a driver of global dryland greening. Sci. Rep. 6, 20716 (2016).

    Article  CAS  Google Scholar 

  22. Venter, Z., Cramer, M. & Hawkins, H.-J. Drivers of woody plant encroachment over Africa. Nat. Commun. 9, 2272 (2018).

    Article  CAS  Google Scholar 

  23. Ukkola, A. M. et al. Annual precipitation explains variability in dryland vegetation greenness globally but not locally. Glob. Change Biol. 27, 4367–4380 (2021).

    Article  CAS  Google Scholar 

  24. Zhang, W., Brandt, M., Tong, X., Tian, Q. & Fensholt, R. Impacts of the seasonal distribution of rainfall on vegetation productivity across the Sahel. Biogeosciences 15, 319–330 (2018).

    Article  Google Scholar 

  25. Fensholt, R. & Rasmussen, K. Analysis of trends in the Sahelian ‘rain-use efficiency’ using GIMMS NDVI, RFE and GPCP rainfall data. Remote Sens. Environ. 115, 438–451 (2011).

    Article  Google Scholar 

  26. Zhang, W. et al. Ecosystem structural changes controlled by altered rainfall climatology in tropical savannas. Nat. Commun. 10, 671 (2019).

    Article  CAS  Google Scholar 

  27. Brandt, M. et al. Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands. Nat. Geosci. 11, 328–333 (2018).

    Article  CAS  Google Scholar 

  28. Hufkens, K. et al. Productivity of North American grasslands is increased under future climate scenarios despite rising aridity. Nat. Clim. Change 6, 710–714 (2016).

    Article  Google Scholar 

  29. Choler, P., Sea, W., Briggs, P., Raupach, M. & Leuning, R. A simple ecohydrological model captures essentials of seasonal leaf dynamics in semi-arid tropical grasslands. Biogeosciences 7, 907–920 (2010).

    Article  Google Scholar 

  30. Huang, J., Yu, H., Dai, A., Wei, Y. & Kang, L. Drylands face potential threat under 2 °C global warming target. Nat. Clim. Change 7, 417–422 (2017).

    Article  Google Scholar 

  31. Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).

    Article  Google Scholar 

  32. Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021). Provides a comprehensive analysis on the dryland expansion debates.

    Article  Google Scholar 

  33. Fatichi, S. et al. Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO2. Proc. Natl Acad. Sci. USA 113, 12757–12762 (2016).

    Article  CAS  Google Scholar 

  34. Daramola, M. T. & Xu, M. Recent changes in global dryland temperature and precipitation. Int. J. Climatol. 42, 1267–1282 (2022).

    Article  Google Scholar 

  35. Berg, A. & McColl, K. A. No projected global drylands expansion under greenhouse warming. Nat. Clim. Change 11, 331–337 (2021).

    Article  Google Scholar 

  36. Berg, A. & Sheffield, J. Climate change and drought: the soil moisture perspective. Curr. Clim. Change Rep. 4, 180–191 (2018).

    Article  Google Scholar 

  37. Jiao, W. et al. Observed increasing water constraint on vegetation growth over the last three decades. Nat. Commun. 12, 3777 (2021). This study found that vegetation growth in the Northern Hemisphere is becoming increasingly water limited.

    Article  CAS  Google Scholar 

  38. Gherardi, L. A. & Sala, O. E. Effect of interannual precipitation variability on dryland productivity: a global synthesis. Glob. Change Biol. 25, 269–276 (2019).

    Article  Google Scholar 

  39. D’Odorico, P. & Bhattachan, A. Hydrologic variability in dryland regions: impacts on ecosystem dynamics and food security. Phil. Trans. R. Soc. B 367, 3145–3157 (2012).

    Article  Google Scholar 

  40. Hou, E. et al. Divergent responses of primary production to increasing precipitation variability in global drylands. Glob. Change Biol. 27, 5225–5237 (2021).

    Article  CAS  Google Scholar 

  41. Ritter, F., Berkelhammer, M. & Garcia-Eidell, C. Distinct response of gross primary productivity in five terrestrial biomes to precipitation variability. Commun. Earth Environ. 1, 34 (2020).

    Article  Google Scholar 

  42. Ridolfi, L., D’Odorico, P. & Laio, F. Noise-Induced Phenomena in the Environmental Sciences (Cambridge Univ. Press, 2011).

  43. Zeng, N. & Neelin, J. D. The role of vegetation–climate interaction and interannual variability in shaping the African savanna. J. Clim. 13, 2665–2670 (2000).

    Article  Google Scholar 

  44. Borgogno, F., D’Odorico, P., Laio, F. & Ridolfi, L. Mathematical models of vegetation pattern formation in ecohydrology. Rev. Geophysics 47, RG1005 (2009).

    Article  Google Scholar 

  45. van de Koppel, J. & Rietkerk, M. Spatial interactions and resilience in arid ecosystems. Am. Nat. 163, 113–121 (2004).

    Article  Google Scholar 

  46. Lefever, R. & Lejeune, O. On the origin of tiger bush. Bull. Math. Biol. 59, 263–294 (1997).

    Article  Google Scholar 

  47. Gherardi, L. A. & Sala, O. E. Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proc. Natl Acad. Sci. USA 112, 12735–12740 (2015). Highlights the role of precipitation varibility in plant community composition in drylands.

    Article  CAS  Google Scholar 

  48. Cleland, E. E. et al. Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology 94, 1687–1696 (2013).

    Article  Google Scholar 

  49. Good, S. P. & Caylor, K. K. Climatological determinants of woody cover in Africa. Proc. Natl Acad. Sci. USA 108, 4902–4907 (2011).

    Article  CAS  Google Scholar 

  50. Lu, X., Wang, L., Pan, M., Kaseke, K. F. & Li, B. A multi-scale analysis of Namibian rainfall over the recent decade—comparing TMPA satellite estimates and ground observations. J. Hydrol. Reg. Stud. 8, 59–68 (2016).

    Article  Google Scholar 

  51. Franz, T., Caylor, K., Nordbotten, J., Rodriguez-Itubre, I. & Celia, M. An ecohydrological approach to predicting regional woody species distribution patterns in dryland ecosystems. Adv. Water Res. 33, 215–230 (2010).

    Article  Google Scholar 

  52. Knapp, A. K., Chen, A., Griffin-Nolan, R. J., Baur, L. E. & Smith, M. Resolving the Dust Bowl paradox of grassland responses to extreme drought. Proc. Natl Acad. Sci. USA 117, 201922030 (2020).

    Article  Google Scholar 

  53. Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change 6, 75–78 (2016).

    Article  Google Scholar 

  54. Austin, A. T. et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141, 221–235 (2004). Illustrates the close linkage between water pulses and biogeochemical cycles in drylands.

    Article  Google Scholar 

  55. Schwinning, S. & Sala, O. E. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141, 211–220 (2004).

    Article  Google Scholar 

  56. Collins, S. L. et al. A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems. Annu. Rev. Ecol. Evol. Syst. 45, 397–419 (2014).

    Article  Google Scholar 

  57. Barnard, R. L., Blazewicz, S. J. & Firestone, M. K. Rewetting of soil: revisiting the origin of soil CO2 emissions. Soil Biol. Biochem. 147, 107819 (2020).

    Article  CAS  Google Scholar 

  58. Manzoni, S. et al. Rainfall intensification increases the contribution of rewetting pulses to soil heterotrophic respiration. Biogeosciences 17, 4007–4023 (2020).

    Article  CAS  Google Scholar 

  59. Leizeaga, A., Meisner, A., Rousk, J. & Bååth, E. Repeated drying and rewetting cycles accelerate bacterial growth recovery after rewetting. Biol. Fertil. Soils 58, 365–374 (2022).

    Article  CAS  Google Scholar 

  60. Gao, D. et al. Responses of soil nitrogen and phosphorus cycling to drying and rewetting cycles: a meta-analysis. Soil Biol. Biochem. 148, 107896 (2020).

    Article  CAS  Google Scholar 

  61. Homyak, P. M., Allison, S. D., Huxman, T. E., Goulden, M. L. & Treseder, K. K. Effects of drought manipulation on soil nitrogen cycling: a meta-analysis. J. Geophys. Res. Biogeosci. 122, 3260–3272 (2017).

    Article  CAS  Google Scholar 

  62. Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676 (2013).

    Article  CAS  Google Scholar 

  63. Nippert, J. B., Knapp, A. K. & Briggs, J. M. Intra-annual rainfall variability and grassland productivity: can the past predict the future? Plant Ecol. 184, 65–74 (2006).

    Article  Google Scholar 

  64. Kaseke, K. F., Wang, L. & Seely, M. K. Nonrainfall water origins and formation mechanisms. Sci. Adv. 3, e1603131 (2017).

    Article  Google Scholar 

  65. Dawson, T. E. & Goldsmith, G. R. The value of wet leaves. N. Phytol. 219, 1156–1169 (2018).

    Article  Google Scholar 

  66. Feng, T. et al. Dew formation reduction in global warming experiments and the potential consequences. J. Hydrol. 593, 125819 (2021).

    Article  Google Scholar 

  67. Gerlein-Safdi, C. et al. Dew deposition suppresses transpiration and carbon uptake in leaves. Agric. For. Meteorol. 259, 305–316 (2018).

    Article  Google Scholar 

  68. Tomaszkiewicz, M., Abou Najm, M., Beysens, D., Alameddine, I. & El-Fadel, M. Dew as a sustainable non-conventional water resource: a critical review. Environ. Rev. 23, 425–442 (2015).

    Article  Google Scholar 

  69. Fessehaye, M. et al. Fog-water collection for community use. Renew. Sustain. Energy Rev. 29, 52–62 (2014).

    Article  Google Scholar 

  70. Kidron, G. J. Angle and aspect dependent dew and fog precipitation in the Negev desert. J. Hydrol. 301, 66–74 (2005).

    Article  Google Scholar 

  71. Chiodi, A. M., Potter, B. E. & Larkin, N. K. Multi-decadal change in western US nighttime vapor pressure deficit. Geophys. Res. Lett. 48, e2021GL092830 (2021).

    Article  Google Scholar 

  72. Tomaszkiewicz, M. et al. Projected climate change impacts upon dew yield in the Mediterranean basin. Sci. Total Environ. 566, 1339–1348 (2016).

    Article  Google Scholar 

  73. Walker, B. H., Ludwig, D., Holling, C. S. & Peterman, R. N. Stability of semi-arid savanna grazing systems. J. Ecol. 69, 473–498 (1981).

    Article  Google Scholar 

  74. Schlesinger, W. H. et al. Biological feedbacks in global desertification. Science 247, 1043–1048 (1990).

    Article  CAS  Google Scholar 

  75. D’Odorico, P., Bhattachan, A., Davis, K., Ravi, S. & Runyan, C. Global desertification: drivers and feedbacks. Adv. Water Res. 51, 326–344 (2013).

    Article  Google Scholar 

  76. Reynolds, J. F. et al. Global desertification: building a science for dryland development. Science 316, 847–851 (2007). Highlights the loss of ecosystem services as a result of dryland desertification.

    Article  CAS  Google Scholar 

  77. Eldridge, D. J. et al. Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecol. Lett. 14, 709–722 (2011). Provides a compehenseive analysis of the shrub enrochment effects on dryland functions.

    Article  Google Scholar 

  78. IPCC Special Report on Climate Change and Land (eds Shukla, P. R. et al.) (IPCC, 2019).

  79. Yang, H. et al. Tropical expansion driven by poleward advancing midlatitude meridional temperature gradients. J. Geophys. Res. Atmos. 125, e2020JD033158 (2020).

    Article  Google Scholar 

  80. Berghuijs, W. R., Woods, R. A. & Hrachowitz, M. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Change 4, 583–586 (2014).

    Article  Google Scholar 

  81. Ayyad, M. A., Fakhry, A. M. & Moustafa, A.-R. A. Plant biodiversity in the Saint Catherine area of the Sinai peninsula. Egypt. Biodivers. Conserv. 9, 265–281 (2000).

    Article  Google Scholar 

  82. Global Land Outlook 2017 (UNCCD, 2017).

  83. Van Ittersum, M. K. et al. Can sub-Saharan Africa feed itself? Proc. Natl Acad. Sci. USA 113, 14964–14969 (2016).

    Article  Google Scholar 

  84. Redo, D., Aide, T. M. & Clark, M. L. Vegetation change in Brazil’s dryland ecoregions and the relationship to crop production and environmental factors: Cerrado, Caatinga, and Mato Grosso, 2001–2009. J. Land Use Sci. 8, 123–153 (2013).

    Article  Google Scholar 

  85. Meyfroidt, P., Lambin, E. F., Erb, K.-H. & Hertel, T. W. Globalization of land use: distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 5, 438–444 (2013).

    Article  Google Scholar 

  86. Rulli, M. C., Saviori, A. & D’Odorico, P. Global land and water grabbing. Proc. Natl Acad. Sci. USA 110, 892–897 (2013).

    Article  CAS  Google Scholar 

  87. Müller, M. F. et al. Impact of transnational land acquisitions on local food security and dietary diversity. Proc. Natl Acad. Sci. USA 118, e2020535118 (2021).

    Article  Google Scholar 

  88. Chiarelli, D. D. et al. Competition for water induced by transnational land acquisitions for agriculture. Nat. Commun. 13, 505 (2022).

    Article  CAS  Google Scholar 

  89. Dell’Angelo, J., D’Odorico, P., Rulli, M. C. & Marchand, P. The tragedy of the grabbed commons: coercion and dispossession in the global land rush. World Dev. 92, 1–12 (2017).

    Article  Google Scholar 

  90. Rosa, L. et al. Potential for sustainable irrigation expansion in a 3 °C warmer climate. Proc. Natl Acad. Sci. USA 117, 29526–29534 (2020).

    Article  CAS  Google Scholar 

  91. Wang, L. & D’Odorico, P. The limits of water pumps. Science 321, 36–37 (2008).

    Article  CAS  Google Scholar 

  92. OECD-FAO Agricultural Outlook 2021–2030 (OECD and FAO, 2021).

  93. Qi, J., Xin, X., John, R., Groisman, P. & Chen, J. Understanding livestock production and sustainability of grassland ecosystems in the Asian Dryland Belt. Ecol. Process. 6, 22 (2017).

    Article  Google Scholar 

  94. Godde, C. M. et al. Global rangeland production systems and livelihoods at threat under climate change and variability. Environ. Res. Lett. 15, 044021 (2020).

    Article  Google Scholar 

  95. Herrero, M. et al. Exploring future changes in smallholder farming systems by linking socio-economic scenarios with regional and household models. Glob. Environ. Change 24, 165–182 (2014).

    Article  Google Scholar 

  96. Bannari, A., Morin, D., Bonn, F. & Huete, A. A review of vegetation indices. Remote Sens. Rev. 13, 95–120 (1995).

    Article  Google Scholar 

  97. Qiu, B. et al. Dense canopies browning overshadowed by global greening dominant in sparse canopies. Sci. Total Environ. 826, 154222 (2022).

    Article  CAS  Google Scholar 

  98. Burrell, A. L., Evans, J. P. & Liu, Y. Detecting dryland degradation using time series segmentation and residual trend analysis (TSS-RESTREND). Remote Sens. Environ. 197, 43–57 (2017).

    Article  Google Scholar 

  99. Bastin, J.-F. et al. The extent of forest in dryland biomes. Science 356, 635–638 (2017).

    Article  CAS  Google Scholar 

  100. Griffith, D. M. et al. Comment on ‘The extent of forest in dryland biomes’. Science 358, eaao1309 (2017).

    Article  Google Scholar 

  101. Teckentrup, L. et al. Assessing the representation of the Australian carbon cycle in global vegetation models. Biogeosciences 18, 5639–5668 (2021).

    Article  CAS  Google Scholar 

  102. MacBean, N. et al. Dynamic global vegetation models underestimate net CO2 flux mean and inter-annual variability in dryland ecosystems. Environ. Res. Lett. 16, 094023 (2021). Highlights the often-neglected uncertainties in the prediction of dryland productivity.

  103. Paschalis, A. et al. Rainfall manipulation experiments as simulated by terrestrial biosphere models: where do we stand? Glob. Change Biol. 26, 3336–3355 (2020).

    Article  Google Scholar 

  104. Whitley, R. et al. A model inter-comparison study to examine limiting factors in modelling Australian tropical savannas. Biogeosciences 13, 3245–3265 (2016).

    Article  Google Scholar 

  105. Hartley, A. J., MacBean, N., Georgievski, G. & Bontemps, S. Uncertainty in plant functional type distributions and its impact on land surface models. Remote Sens. Environ. 203, 71–89 (2017).

    Article  Google Scholar 

  106. MacBean, N. et al. Testing water fluxes and storage from two hydrology configurations within the ORCHIDEE land surface model across US semi-arid sites. Hydrol. Earth Syst. Sci. 24, 5203–5230 (2020).

    Article  CAS  Google Scholar 

  107. Burrell, A., Evans, J., De & Kauwe, M. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat. Commun. 11, 3853 (2020).

    Article  CAS  Google Scholar 

  108. De Kauwe, M. G., Medlyn, B. E. & Tissue, D. T. To what extent can rising [CO2] ameliorate plant drought stress? N. Phytol. 231, 2118–2124 (2021).

    Article  Google Scholar 

  109. Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    Article  CAS  Google Scholar 

  110. Bernacchi, C. J. & VanLoocke, A. Terrestrial ecosystems in a changing environment: a dominant role for water. Annu. Rev. Plant Biol. 66, 599–622 (2015).

    Article  CAS  Google Scholar 

  111. Roderick, M. L., Greve, P. & Farquhar, G. D. On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res. 51, 5450–5463 (2015).

    Article  CAS  Google Scholar 

  112. Anderegg, W. R., Trugman, A. T., Bowling, D. R., Salvucci, G. & Tuttle, S. E. Plant functional traits and climate influence drought intensification and land–atmosphere feedbacks. Proc. Natl Acad. Sci. USA 116, 14071–14076 (2019).

    Article  CAS  Google Scholar 

  113. Zhou, S. et al. Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl Acad. Sci. USA 116, 18848–18853 (2019).

    Article  CAS  Google Scholar 

  114. Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).

    Article  Google Scholar 

  115. Abdelmoaty, H. M., Papalexiou, S. M., Rajulapati, C. R. & AghaKouchak, A. Biases beyond the mean in CMIP6 extreme precipitation: a global investigation. Earth’s Future 9, e2021EF002196 (2021).

    Article  Google Scholar 

  116. Dunkerley, D. L. Light and low-intensity rainfalls: a review of their classification, occurrence, and importance in landsurface, ecological and environmental processes. Earth Sci. Rev. 214, 103529 (2021).

    Article  Google Scholar 

  117. Zhu, Y. & Yang, S. Interdecadal and interannual evolution characteristics of the global surface precipitation anomaly shown by CMIP5 and CMIP6 models. Int. J. Climatol. 41, E1100–E1118 (2021).

    Article  Google Scholar 

  118. Cuthbert, M. O. et al. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 572, 230–234 (2019).

    Article  CAS  Google Scholar 

  119. Miguez-Macho, G. & Fan, Y. Spatiotemporal origin of soil water taken up by vegetation. Nature 598, 624–628 (2021).

    Article  Google Scholar 

  120. Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2022).

    Article  Google Scholar 

  121. Trabucco, A. & Zomer, R. Global aridity index and potential evapotranspiration (ET0) climate database v.2. Figshare https://doi.org/10.6084/m9.figshare.7504448.v4 (2019).

  122. Paschalis, A., Fatichi, S., Katul, G. G. & Ivanov, V. Y. Cross-scale impact of climate temporal variability on ecosystem water and carbon fluxes. J. Geophys. Res. Biogeosci. 120, 1716–1740 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from Division of Earth Sciences of National Science Foundation (EAR‐1554894). N.M. acknowledges funding from NASA Carbon Cycle Program grant no. 80NSSC21K1709, S.M. from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no. 101001608), G.V. from European Commission and Swedish Research Council for Sustainable Development FORMAS (grant 2018-02787) for funding in the frame of the collaborative international consortium iAqueduct, financed under the 2018 Joint call, and M.C.R. from the EU PRIMA Programme under Horizon 2020 European Union’s Framework Programme for Research and Innovation (NEXUS-NESS an Art.185 initiative grant no, 2042). We thank the TRENDY v.7 modellers for providing simulations and the AmeriFlux, OzFlux and FLUXNET site principal investigators for providing the in situ eddy covariance flux tower CO2 and ET fluxes used to produce Fig. 6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Arden Burrell, Akash Koppa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Fig. 1, Table 1 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Jiao, W., MacBean, N. et al. Dryland productivity under a changing climate. Nat. Clim. Chang. 12, 981–994 (2022). https://doi.org/10.1038/s41558-022-01499-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-022-01499-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing