Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selection on offspring size and contemporary evolution under ocean acidification

Abstract

Ocean acidification may have deleterious effects on many species, but anticipating long-term changes in the abundance of populations will require an understanding of ocean acidification as an evolutionary force. Here, I show that ocean acidification alters natural selection on offspring size and is likely to drive contemporary evolution. In a detailed study of a coastal fish species (California grunion), I demonstrate that larval mortality is highly sensitive to ocean acidification and that mortality rates are lower for larger larvae. However, these effects are countered by tradeoffs between offspring size and number, suggesting that measurements of maternal fitness are critical for quantifying selection through ocean acidification. Measurements of selection and genetic variation were used to project the evolution of larval size as seawater conditions changed incrementally over many decades. Results for California grunion suggest that contemporary evolution may offset the projected decline in reproductive success by about 50%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Selection on larval size under ambient and ocean acidification treatments.
Fig. 2: Projected change in reproductive success of California grunion (offspring number × survival, standardized to 2020 conditions) as pCO2 and temperature levels increase incrementally over time.

Similar content being viewed by others

Data availability

Data from this study are available through the Dryad digital repository (https://doi.org/10.5061/dryad.0gb5mkm3w)55.

Code availability

R scripts used to analyze variation and natural selection on larval size and to project evolutionary responses of larvae to ocean acidification are available at Zenodo and accessible from the Dryad link55.

References

  1. Sunday, J. M., Crim, R. N., Harley, C. D. G. & Hart, M. W. Quantifying rates of evolutionary adaptation in response to ocean acidification. PLoS ONE 6, e22881 (2011).

    Article  CAS  Google Scholar 

  2. Kelly, M. W. & Hofmann, G. E. Adaptation and the physiology of ocean acidification. Funct. Ecol. 27, 980–990 (2013).

    Article  Google Scholar 

  3. Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M. & Marshall, D. J. Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16, 1488–1500 (2013).

    Article  Google Scholar 

  4. Reusch, T. B. H. Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants. Evol. Appl. 7, 104–122 (2014).

    Article  Google Scholar 

  5. Sunday, J. M. et al. Evolution in an acidifying ocean. Trends Ecol. Evol. 29, 117–125 (2014).

    Article  Google Scholar 

  6. Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).

    Article  Google Scholar 

  7. Przeslawski, R., Byrne, M. & Mellin, C. A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae. Glob. Change Biol. 21, 2122–2140 (2015).

    Article  Google Scholar 

  8. Cattano, C., Claudet, J., Domenici, P. & Milazzo, M. Living in a high CO2 world: a global meta-analysis shows multiple trait-mediated fish responses to ocean acidification. Ecol. Monogr. 88, 320–335 (2018).

    Article  Google Scholar 

  9. Lohbeck, K., Riebesell, U. & Reusch, T. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat. Geosci. 5, 346–351 (2012).

    Article  CAS  Google Scholar 

  10. Dam, H. G. et al. Rapid, but limited, zooplankton adaptation to simultaneous warming and acidification. Nat. Clim. Change 11, 780–786 (2021).

    Article  Google Scholar 

  11. Kelly, M. W., Padilla-Gamiño, J. L. & Hofmann, G. E. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus. Glob. Change Biol. 19, 2536–2546 (2013).

    Article  Google Scholar 

  12. Pespeni, M. H. et al. Evolutionary change during experimental ocean acidification. Proc. Natl Acad. Sci. USA 110, 6937–6942 (2013).

    Article  CAS  Google Scholar 

  13. Foo, S. A., Dworjanyn, S. A., Poore, A. G. B., Harianto, J. & Byrne, M. Adaptive capacity of the sea urchin Heliocidaris erythrogramma to ocean change stressors: responses from gamete performance to the juvenile. Mar. Ecol. Prog. Ser. 556, 161–172 (2016).

    Article  CAS  Google Scholar 

  14. Malvezzi, A. J. et al. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification. Evol. Appl. 8, 352–362 (2015).

    Article  CAS  Google Scholar 

  15. Bitter, M. C., Kapsenberg, L., Gattuso, J.-P. & Pfister, C. A. Standing genetic variation fuels rapid adaptation to ocean acidification. Nat. Commun. 10, 5821 (2019).

    Article  CAS  Google Scholar 

  16. Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics 4th edn (Pearson Prentice Hall, 1996).

  17. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Oxford Univ. Press, 1998).

  18. Ishimatsu, A., Hayashi, M. & Kikkawa, T. Fishes in high-CO2, acidified oceans. Mar. Ecol. Prog. Ser. 373, 295–302 (2008).

    Article  CAS  Google Scholar 

  19. Melzner, F. et al. Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6, 2313–2331 (2009).

    Article  CAS  Google Scholar 

  20. Timothy A. Mousseau and Charles W. Fox. Maternal Effects as Adaptations 178–201 (Oxford Univ. Press, 1998).

  21. Marshall, D., Allen, R. & Crean, A. The ecological and evolutionary importance of maternal effects in the sea. Oceanogr. Mar. Biol. 46, 203–250 (2008).

    Google Scholar 

  22. Tasoff, A. J. & Johnson, D. W. Can larvae of a marine fish adapt to ocean acidification? Evaluating the evolutionary potential of California grunion (Leuresthes tenuis). Evol. Appl. 12, 560–571 (2019).

    Article  CAS  Google Scholar 

  23. Smith, C. C. & Fretwell, S. D. The optimal balance between size and number of offspring. Am. Nat. 108, 499–506 (1974).

    Article  Google Scholar 

  24. Shimada, Y., Shikano, T., Murakami, N., Tsuzaki, T. & Seikai, T. Maternal and genetic effects on individual variation during early development in Japanese flounder Paralichthys olivaceus. Fish. Sci. 73, 244–249 (2007).

    Article  CAS  Google Scholar 

  25. Johnson, D. W., Christie, M. R. & Moye, J. Quantifying evolutionary potential of marine fish larvae: heritability, selection, and evolutionary constraints. Evolution 64, 2614–2628 (2010).

    Article  Google Scholar 

  26. Miles, C. M., Hadfield, M. G. & Wayne, M. L. Heritability for egg size in the serpulid polychaete Hydroides elegans. Mar. Ecol. Prog. Ser. 340, 155–162 (2007).

    Article  Google Scholar 

  27. Iguchi, K. & Yamaguchi, M. Adaptive significance of inter- and intrapopulational egg size variation in ayu Plecoglossus altivelis (osmeridae). Copeia 1994, 184–190 (1994).

    Article  Google Scholar 

  28. Marshall, D. J. & Keough, M. J. Effects of settler size and density on early post-settlement survival of Ciona intestinalis in the field. Mar. Ecol. Prog. Ser. 259, 139–144 (2003).

    Article  Google Scholar 

  29. González-Ortegón, E. & Giménez, L. Environmentally mediated phenotypic links and performance in larvae of a marine invertebrate. Mar. Ecol. Prog. Ser. 502, 185–195 (2014).

    Article  Google Scholar 

  30. Pan, T.-C. F., Applebaum, S. L. & Manahan, D. T. Experimental ocean acidification alters the allocation of metabolic energy. Proc. Natl Acad. Sci. USA 112, 4696–4701 (2015).

    Article  CAS  Google Scholar 

  31. Rollinson, N. & Hutchings, J. A. Environmental quality predicts optimal egg size in the wild. Am. Nat. 181, 76–90 (2013).

    Article  Google Scholar 

  32. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Oxford Univ. Press, 1998).

  33. Munday, P. L. Transgenerational acclimation of fishes to climate change and ocean acidification. F1000Prime Rep. 6, 99 (2014).

    Article  Google Scholar 

  34. Murray, C. S., Malvezzi, A., Gobler, C. J. & Baumann, H. Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fish. Mar. Ecol. Prog. Ser. 504, 1–11 (2014).

    Article  Google Scholar 

  35. Baumann, H. Experimental assessments of marine species sensitivities to ocean acidification and co-stressors: how far have we come? Can. J. Zool. 97, 399–408 (2019).

    Article  Google Scholar 

  36. Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).

    Article  CAS  Google Scholar 

  37. Bell, G. Evolutionary rescue and the limits of adaptation. Phil. Trans. R. Soc. B 368, p20120080 (2013).

    Article  Google Scholar 

  38. Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).

    Article  Google Scholar 

  39. Smyder, E. A., Martin, K. L. M. & Gatten, R. E. Jr Temperature effects on egg survival and hatching during the extended incubation period of California grunion, Leuresthes tenuis. Copeia 2002, 313–320 (2002).

    Article  Google Scholar 

  40. Barneche, D. R., Robertson, D. R., White, C. R. & Marshall, D. J. Fish reproductive-energy output increases disproportionately with body size. Science 360, 642–645 (2018).

    Article  CAS  Google Scholar 

  41. Van Noordwijk, A. J. & de Jong, G. Acquisition and allocation of resources: their influence on variation in life history tactics. Am. Nat. 128, 137–142 (1986).

    Article  Google Scholar 

  42. Davidson, C. Spatial and Temporal Variability of Coastal Carbonate Chemistry in the Southern California Region. MSc thesis, Univ. California, San Diego (2015).

  43. Jones, J. M., Sweet, J., Brzezinski, M. A., McNair, H. M. & Passow, U. Evaluating carbonate system algorithms in a nearshore system: does total alkalinity matter? PLoS ONE 11, e0165191 (2016).

    Article  CAS  Google Scholar 

  44. Gruber, N. et al. Rapid progression of ocean acidification in the California current system. Science 337, 220–223 (2012).

    Article  CAS  Google Scholar 

  45. Turi, G., Lachkar, Z., Gruber, N. & Münnich, M. Climatic modulation of recent trends in ocean acidification in the California current system. Environ. Res. Lett. 11, 014007 (2016).

    Article  Google Scholar 

  46. Northcott, D. et al. Impacts of urban carbon dioxide emissions on sea-air flux and ocean acidification in nearshore waters. PLoS ONE 14, e0214403 (2019).

    Article  CAS  Google Scholar 

  47. Rausher, M. D. The measurement of selection on quantitative traits: biases due to environmental covariances between traits and fitness. Evolution 46, 616–626 (1992).

    Article  Google Scholar 

  48. Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).

  49. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  50. Kruuk, L. E. B. Estimating genetic parameters in natural populations using the animal model. Phil. Trans. R. Soc. B 359, 873–890 (2004).

    Article  Google Scholar 

  51. Wilson, A. J. et al. An ecologist’s guide to the animal model. J. Anim. Ecol. 79, 13–26 (2010).

    Article  Google Scholar 

  52. Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, (2010).

  53. Heidelberger, P. & Welch, P. D. Simulation run length control in the presence of an initial transient. Oper. Res. 31, 1109–1144 (1983).

    Article  Google Scholar 

  54. Clark, F. N. The Life History of Leuresthes Tenuis, an Atherine Fish with Tide Controlled Spawning Habits Fish Bulletin No. 10 (California Department of Fish and Game, 1925).

  55. Johnson, D.W. Data from: Selection on offspring size and contemporary evolution under ocean acidification. Dryad https://doi.org/10.5061/dryad.0gb5mkm3w (2022)

Download references

Acknowledgements

Special thanks to A. Tasoff, E. Siegfried, J. Chhor, C. Shelley, J. Paz, B. McCann, T. Morales, S. Parrott and C. Powell for their assistance with data collection. I also thank Y. Ralph and the staff of the CSULB Marine Lab for logistical support. This study was funded by NSF award OCE-1948975 to D.W.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren W. Johnson.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Miguel Baltazar-Soares, Andrea Frommel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Change in larval size throughout reproductive season.

Variation in larval size by month and year. Solid horizontal lines indicate the medians. Boxes represent the interquartile range and vertical lines extend to the largest and smallest values within 1.5 times the interquartile range.

Extended Data Fig. 2 Projected evolution of larval size and relative fitness using the Breeder’s equation.

Projected evolution of larval size and effects on relative reproductive success using a two-sex version of the Breeder’s equation. Solid line describes the projected reproductive success in the absence of evolution and the dot-and-dashed line represents reproductive success when larval size is allowed to evolve according to the patterns of selection and heritability described in this study. Thin dashed lines and shaded area represent the 95% Confidence Intervals for the projections with and without evolutionary responses.

Supplementary information

Supplementary Information

Supplementary Text 1 and 2, Supplementary Tables 1–3 and Supplementary Figs. 1–4.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, D.W. Selection on offspring size and contemporary evolution under ocean acidification. Nat. Clim. Chang. 12, 757–760 (2022). https://doi.org/10.1038/s41558-022-01425-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-022-01425-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing