Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Poleward shift of Circumpolar Deep Water threatens the East Antarctic Ice Sheet


Future sea-level rise projections carry large uncertainties, mainly driven by the unknown response of the Antarctic Ice Sheet to climate change. During the past four decades, the contribution of the East Antarctic Ice Sheet to sea-level rise has increased. However, unlike for West Antarctica, the causes of East Antarctic ice-mass loss are largely unexplored. Here, using oceanographic observations off East Antarctica (80–160° E) we show that mid-depth Circumpolar Deep Water has warmed by 0.8–2.0 °C along the continental slope between 1930–1990 and 2010–2018. Our results indicate that this warming may be implicated in East Antarctic ice-mass loss and coastal water-mass reorganization. Further, it is associated with an interdecadal, summer-focused poleward shift of the westerlies over the Southern Ocean. Since this shift is predicted to persist into the twenty-first century, the oceanic heat supply to East Antarctica may continue to intensify, threatening the ice sheet’s future stability.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Warming of the Indian Ocean sector of the East Antarctic continental slope.
Fig. 2: Changes in CDW potential temperature and their link to the southward migration of the S-ACC.
Fig. 3: Changes in WSC and their link to the southward migration of the S-ACC.
Fig. 4: Warming of Vincennes Bay.

Data availability

The data used in this study encompass hydrographic measurements from the following public data centres: Southern Ocean Atlas (; Argo (; and the CLIVAR and Carbon Hydrographic Data Office ( We also used the Marine Mammals Exploring the Ocean Pole to Pole consortium data ( and CTD and XCTD data from the Institute of Cetacean Research ( Bathymetric data were obtained from Rtopo 1.0.5 ( and altimetric data via the AVISO ( and MyOcean ( websites. The reanalysis wind data are available via the European Centre for Medium-Range Weather Forecasts website ( The 18-year Antarctic ice shelf thickness time series was obtained from F. Paolo and can be downloaded from The Marshall SAM index (station-based) can be retrieved from

Code availability

The MATLAB scripts used for the analysis described in this study can be obtained from L.H.-B. upon reasonable request.


  1. Rignot, E. et al. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl Acad. Sci. USA 116, 1095–1103 (2019).

    Article  CAS  Google Scholar 

  2. Shepherd, A. et al. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558, 219–222 (2018).

    Article  Google Scholar 

  3. Jenkins, A. et al. West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability. Nat. Geosci. 11, 733–738 (2018).

    Article  CAS  Google Scholar 

  4. Dotto, T. et al. Control of the oceanic heat content of the Getz‐Dotson Trough, Antarctica, by the Amundsen Sea Low. J. Geophys. Res. Oceans 125, e2020JC016113 (2020).

    Article  Google Scholar 

  5. Rott, H., Rack, W., Skvarca, P. & Angelis, H. D. Northern Larsen Ice Shelf, Antarctica: further retreat after collapse. Ann. Glaciol. 34, 277–282 (2002).

    Article  Google Scholar 

  6. Schmidtko, S., Heywood, K. J., Thompson, A. F. & Aoki, S. Multidecadal warming of Antarctic waters. Science 346, 1227–1231 (2014).

    Article  CAS  Google Scholar 

  7. Holland, P. R., Bracegirdle, T. J., Dutrieux, P., Jenkins, A. & Steig, E. J. West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nat. Geosci. 12, 718–724 (2019).

    Article  CAS  Google Scholar 

  8. Smith, B. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368, 1239–1242 (2020).

    Article  CAS  Google Scholar 

  9. Rintoul, S. R. et al. Ocean heat drives rapid basal melt of the Totten Ice Shelf. Sci. Adv. 2, e1601610 (2016).

    Article  Google Scholar 

  10. Herraiz–Borreguero, L. et al. Circulation of modified Circumpolar Deep Water and basal melt beneath the Amery Ice Shelf, East Antarctica. J. Geophys. Res. Oceans 120, 3098–3112 (2015).

    Article  Google Scholar 

  11. Greene, C. A. et al. Wind causes Totten Ice Shelf melt and acceleration. Sci. Adv. 3, e1701681 (2017).

    Article  Google Scholar 

  12. Gille, S. T. Warming of the Southern Ocean since the 1950s. Science 295, 1275–1277 (2002).

    Article  CAS  Google Scholar 

  13. Aoki, S., Rintoul, S. R., Ushio, S., Watanabe, S. & Bindoff, N. L. Freshening of the Adélie Land Bottom Water near 140°E. Geophys. Res. Lett. 32, L23601 (2005).

    Article  Google Scholar 

  14. Yamazaki, K. et al. Multidecadal poleward shift of the southern boundary of the Antarctic Circumpolar Current off East Antarctica. Sci. Adv. 7, eabf8755 (2021).

    Article  Google Scholar 

  15. Auger, M., Morrow, R., Kestenare, E., Sallée, J.-B. & Cowley, R. Southern Ocean in-situ temperature trends over 25 years emerge from interannual variability. Nat. Commun. 12, 514 (2021).

    Article  CAS  Google Scholar 

  16. Velicogna, I. et al. Continuity of ice sheet mass loss in Greenland and Antarctica from the GRACE and GRACE follow-on missions. Geophys. Res. Lett. 47, e2020GL087291 (2020).

    Article  Google Scholar 

  17. Konrad, H. et al. Net retreat of Antarctic glacier grounding lines. Nat. Geosci. 11, 258–262 (2018).

    CAS  Google Scholar 

  18. Nitsche, F. O. et al. Bathymetric control of warm ocean water access along the East Antarctic Margin. Geophys. Res. Lett. 44, 8936–8944 (2017).

    Article  Google Scholar 

  19. Paolo, F. S., Fricker, H. A. & Padman, L. Volume loss from Antarctic ice shelves is accelerating. Science 348, 327–331 (2015).

    Article  CAS  Google Scholar 

  20. Thompson, A. F., Stewart, A. L., Spence, P. & Heywood, K. J. The Antarctic Slope Current in a changing climate. Rev. Geophys. 56, 741–770 (2018).

    Article  Google Scholar 

  21. Whitworth, T. 3rd, Orsi, A. H., Kim, S.–J., Nowlin, W.D. Jr. and Locarnini, R. A. In Ocean, Ice and Atmosphere: Interactions at the Antarctic Continental Margin. Antarctic Research Series, Vol. 75 (eds Jacobs, S. S. & Weiss, R. F.) 1–27 (American Geophysical Union, 1998).

  22. Meijers, A. J. S., Bindoff, N. L. & Rintoul, S. R. Estimating the four-dimensional structure of the Southern Ocean using satellite altimetry. J. Atmos. Ocean. Tech. 28, 548–568 (2011).

    Article  Google Scholar 

  23. Orsi, A. H., Whitworth, T.3rd & Nowlin, W. D.Jr. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I 42, 641–673 (1995).

    Article  Google Scholar 

  24. Swart, N. C., Fyfe, J. C., Gillett, N. & Marshall, G. J. Comparing trends in the southern annular mode and surface westerly Jet. J. Clim. 28, 8840–8859 (2015).

    Article  Google Scholar 

  25. Naveira Garabato, A. C. et al. Phased response of the subpolar Southern Ocean to changes in circumpolar winds. Geophys. Res. Lett. 46, 6024–6033 (2019).

    Article  Google Scholar 

  26. Hazel, J. E. & Stewart, A. L. Are the near-Antarctic easterly winds weakening in response to enhancement of the southern annular mode? J. Clim. 32, 1895–1918 (2019).

    Article  Google Scholar 

  27. Peña-Molino, B., McCartney, M. S. & Rintoul, S. R. Direct observations of the Antarctic Slope Current transport at 113°E. J. Geophys. Res. Oceans 121, 7390–7407 (2016).

    Article  Google Scholar 

  28. Langlais, C. E., Rintoul, S. R. & Zika, J. D. Sensitivity of Antarctic Circumpolar Current transport and eddy activity to wind patterns in the Southern Ocean. J. Phys. Oceanogr. 45, 1051–1067 (2015).

    Article  Google Scholar 

  29. Thompson, D. W. J. & Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 296, 895–899 (2002).

    Article  CAS  Google Scholar 

  30. Fogt, R. & Marshall, G. J. The Southern Annular Mode: variability, trends, and climate impacts across the Southern Hemisphere. WIREs Clim. Change 11, e652 (2020).

    Article  Google Scholar 

  31. Marshall, G. J. Trends in the Southern annular mode from observations and reanalyses. J. Clim. 16, 4134–4143 (2003).

    Article  Google Scholar 

  32. Spence, P. et al. Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett. 41, 4601–4610 (2014).

    Article  Google Scholar 

  33. Ribeiro, N. et al. Warm modified Circumpolar Deep Water intrusions drive ice shelf melt and inhibit Dense Shelf Water formation in Vincennes Bay, East Antarctica. J. Geophys. Res. Oceans 126, e2020JC016998 (2021).

    Article  Google Scholar 

  34. Tamura, T., Ohshima, K. I., Fraser, A. D. & Williams, G. D. Sea ice production variability in Antarctic coastal polynyas. J. Geophys. Res. Oceans 121, 2967–2979 (2016).

    Article  Google Scholar 

  35. Gordon, A. L. in Deep Convection and Water Mass Formation in the Ocean (eds Gascard, J. & Chu, P.) 17–35 (Elsevier, 1991).

  36. Brancato, V. et al. Grounding line retreat of Denman Glacier, East Antarctica, measured with COSMO-SkyMed radar interferometry data. Geophys. Res. Lett. 47, e2019GL08629 (2020).

    Article  Google Scholar 

  37. Dutrieux, P. et al. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science 343, 174–178 (2014).

    Article  CAS  Google Scholar 

  38. Silvano, A. et al. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water. Sci. Adv. 4, eaap9467 (2018).

    Article  Google Scholar 

  39. Zheng, F., Li, J., Clark, R. T. & Nnamchi, H. C. Simulation and projection of the Southern Hemisphere Annular Mode in CMIP5 models. J. Clim. 26, 9860–9879 (2013).

    Article  Google Scholar 

  40. Khazendar, A. et al. Observed thinning of Totten Glacier is linked to coastal polynya variability. Nat. Commun. 4, 2857 (2013).

    Article  CAS  Google Scholar 

  41. Herraiz-Borreguero, L. and Naveira Garabato, A. C. East_Antarctica;

Download references


L.H.-B. received grant support from the European Research Council Horizon 2020 Marie Skłodowska-Curie Individual Fellowship, through grant no. 661015 and the Centre for Southern Hemisphere Oceans Research. A.C.N.G. received grant support from the Royal Society and the Wolfson Foundation.

Author information

Authors and Affiliations



L.H.-B. proposed the research, led the data analysis and prepared the figures. L.H.-B. and A.C.N.G. interpreted the results and wrote the manuscript.

Corresponding author

Correspondence to Laura Herraiz-Borreguero.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Tore Hattermann, Kaihe Yamazaki and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text and references, Figs. 1–12 and Table 1.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herraiz-Borreguero, L., Naveira Garabato, A.C. Poleward shift of Circumpolar Deep Water threatens the East Antarctic Ice Sheet. Nat. Clim. Chang. 12, 728–734 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing