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The provision of food and water, the uptake of CO2 and evapo-
rative cooling depend on a sufficient moisture supply to the 
land surface1,2. Climate change affects moisture supply and, 

in combination with rising atmospheric CO2, affects ecosystem 
function3–8. The water and carbon cycles are coupled via vegetation, 
which assimilates CO2 during photosynthesis, while simultaneously 
transpiring through the stomata. From an energy balance perspec-
tive, transpiration (T) cools the surface air at the expense of energy 
which would otherwise contribute to surface heating9–11. Through 
this water–vegetation–climate feedback, changes in soil moisture 
influence evaporative cooling and consequently surface warming10. 
However, regional changes in water availability do not affect ecosys-
tem function uniformly. Ecosystem responses depend on whether 
the region is energy limited or water limited5,12–14. In addition, rising 
atmospheric CO2 is expected to influence physiological processes 
that create more favourable conditions for photosynthesis and con-
sequently plant growth15–17 with contrasting impacts on plant tran-
spiration and therefore energy and water cycles15,16.

Fundamental to the future of the terrestrial carbon sink is the 
extent to which terrestrial ecosystems are becoming more water 
limited3,4,18–24. Agreement in trends of individual water-related 
variables such as soil moisture and terrestrial evaporation (usu-
ally referred to as evapotranspiration25) is lacking. This extends 
to traditional drought or aridity indices, irrespective of whether 
observations22,26–28, reanalyses28, climate model simulations28,29 or 
future climate projections22,30–34 are used. The analysis of the eco-
system response to a changing climate is complicated by various 
processes involved at different temporal scales and operating in dif-
ferent directions. For instance, while the observed widespread veg-
etation greening in recent decades does not support the notion of 
increased water limitation15–17,19, it is mostly driven by CO2 fertiliza-
tion which can, at least temporarily, overshadow ongoing changes 

in water availability. Further, by controlling water availability in 
water-limited regions, large-scale modes of variability (for example, 
the El Niño/Southern Oscillation) exert strong controls over inter-
annual variability in ecosystem water limitation35. Reconciling the 
degree to which ecosystem water limitation can affect vegetation 
through drought stress36 and tree mortality37 and lead to changes in 
surface properties including albedo38,39 and roughness40 is crucial. 
Existing uncertainty is partly related to differing approaches30. Some 
studies analysed water supply through soil moisture3,4,18,23,24, others 
focused on water demand by considering precipitation alongside 
(potential) evaporation19,21,22. These differing approaches can lead to 
different outcomes41.

In contrast to the debate on water availability, increasing trends 
in energy availability are clear, consistent and coincide with increas-
ing temperatures42. This affects ecosystems in multiple ways; the 
RuBisCO enzyme activity is crucial for photosynthesis and is sensi-
tive to increasing temperatures43,44. Further, temperature influences 
vapour pressure deficit34,45,46; higher temperatures increase atmo-
spheric evaporative demand, increasing ecosystem water limita-
tion and, potentially, cause plants to close their stomata to prevent 
excessive water loss47–49. This highlights the necessity of considering 
energy and water variables together in a comprehensive character-
ization of ecosystem water limitation3,45.

Here we study ecosystem energy limitation and water limitation 
together, to reconcile whether the surface is drying or wetting from 
an ecosystem function perspective. We use the ecosystem limita-
tion index (ELI12; Methods) that reflects the fundamental concepts 
of water limitation and energy limitation. These typically focus 
on the sensitivity of ecosystem function (represented through ter-
restrial evaporation anomalies) to water (soil moisture anomalies) 
and energy availability (incoming shortwave radiation anomalies). 
Here these sensitivities are assessed statistically with correlations 
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between anomalies of terrestrial evaporation with soil moisture 
(cor(SM′,ET′), typically positive in water-limited conditions) and 
incoming shortwave radiation (cor(SWin,ET′), typically positive in 
energy-limited conditions12,50), respectively. The ELI is then com-
puted as cor(SM′,ET′) − cor(SWin,ET′), where the prime denotes 
monthly anomalies of soil moisture (SM), terrestrial evaporation 
(ET) and incoming shortwave radiation (SWin), respectively. Positive 
ELI values denote water-limited conditions and negative values 
indicate energy-limited conditions. This way, the ELI moves beyond 
traditional drought indices based on meteorological information by 
evaluating the functional ecosystem response to hydrometeorologi-
cal conditions. Further, the ELI permits studying deviations from 
the seasonal cycle by using monthly anomalies. Within the ELI, 
the terrestrial evaporation reflects the total ecosystem response, as 
it comprises bare soil evaporation, canopy interception and plant 
transpiration. Soil moisture is used as it reflects water available for 
terrestrial evaporation. Incoming shortwave radiation functions as 
the main proxy for energy availability, as it is directly used by plants 
for photosynthesis and can therefore be closely associated with 
plant transpiration. As such, it has widely been used as an energy 
proxy for ET51. In addition to incoming shortwave radiation, we use 
air temperature as a simple and widely available proxy for energy 
availability. The ELI is calculated using historical and ‘worst-case’ 
Shared Socioeconomic Pathway (SSP) 5-8.5 simulations from the 
Coupled Model Intercomparison Project Phase 6 (CMIP6; ref. 52) 
from 11 models (Methods) for the period 1980–2100.

Continuation of present ecosystem limitation trends
We find a steady increase in ELI throughout 1980–2100, mainly 
reflecting a weakening correlation between terrestrial evaporation 
anomalies and incoming shortwave radiation anomalies but also a 
strengthening correlation with soil moisture anomalies (Fig. 1a). A 
comparable ELI trend can be found when computed with anomalies 
of air temperature as an alternative energy variable (Supplementary 
Fig. 1), due to high correlation of incoming shortwave radiation 
and air temperature at the monthly time scale. A similar agree-
ment between ELI trends from different models can be found when 
exchanging time on the x axis for air temperature warming since 
1980 (Supplementary Fig. 2), pointing to similar climate sensi-
tivities between these models. This comparison also indicates that 
beyond a global warming of 1.5 °C, all considered models agree on 
the increasing sign of the ELI change. The relatively small change 
in water limitation corroborates the projections of hardly any dry-
land expansion as previously reported18. However, despite a larger 
contribution of energy limitation, the strong ELI trend is a result of 
contributions of both components.

We find that the role of incoming shortwave radiation versus 
soil moisture is more pronounced when comparing their respec-
tive global trends (Fig. 1b,c). Widespread increasing incoming 
shortwave radiation is associated with declining energy limitation, 
thereby increasing the ELI. Simultaneously, this involves increasing 
atmospheric water demand associated with higher temperatures 
(Supplementary Fig. 3c), as reflected in variables such as relative 
humidity or vapour pressure deficit (Supplementary Fig. 3a,b;  
refs. 33,45,46). This further increases ecosystem water limitation and 
consequently temperature through the water–vegetation–climate 
feedback. In contrast to multimodel incoming shortwave radia-
tion trends, global changes in soil moisture are not substantial  
(Fig. 1c), with substantial uncertainty across models. This uncer-
tainty is related to inconclusive trends in precipitation (ref. 53; 
Supplementary Fig. 3d) and land surface dryness, which varies 
between regions and soil depths54 and differences between root-zone 
depths amongst the models.

Until approximately 2030 the CMIP6 models agree on a global 
terrestrial evaporation increase (Fig. 1d). From 2030 onwards, mul-
timodel uncertainty increases substantially, as some models show 

continued increases in terrestrial evaporation, while others suggest 
decreases. The increase in uncertainty of terrestrial evaporation 
trends over time is also apparent for precipitation (Supplementary 
Fig. 3d), which leads to a net zero change in water storage in the 
root zone with increasing uncertainties (Fig. 1c). The sign and mag-
nitude of global multimodel terrestrial evaporation trends com-
pare well with a sample of state-of-the-art datasets, suggesting that 
CMIP6 models represent terrestrial evaporation reasonably and 
that terrestrial evaporation from these models can be used to evalu-
ate changes in land–atmosphere interactions.

The consistent increase of leaf area index (LAI) during the 
study period, with increasing multimodel spread, reflects the 
impact of CO2 fertilization15–17,55. Enhanced LAI in turn contrib-
utes to increased plant transpiration (Supplementary Fig. 4c;  
ref. 56). Combined with the levelling off of increases in the mul-
timodel mean of the sum of bare soil evaporation and canopy 
interception around 2030 (Supplementary Fig. 4b), the fraction of 
transpiration with regards to terrestrial evaporation increases in 
the future too (T/ET; Supplementary Fig. 4a,c,d). This suggests an 
increasing influence of vegetation for the land water and energy 
balances. Additionally, when only considering plant transpiration 
anomalies for ELI (ELIT) instead of terrestrial evaporation anom-
alies (default ELI), we find a similar but slightly weaker signal 
(Supplementary Fig. 5). While energy limitation in ELI and ELIT are 
very similar, water limitation is stronger in ELI, which corroborates 
earlier findings57. This is not solely due to plant transpiration relying 
mostly on root-zone soil moisture with large uncertainties (Fig. 1c)  
but also to plant transpiration being parametrized differently 
by models and it being probably more uncertain than terrestrial 
evaporation due to a lack of observations56. The higher values for 
cor(SM′,ET′) can be related to, and confounded by, canopy inter-
ception, as precipitation evaporates from leaves instead of infiltrat-
ing into the root zone57. In this context, we use partial correlations 
cor(SM′,ET′|SW′

in) and cor(SW′

in,ET′|SM′) for computing an 
alternative ELI to exclude confounding effects of energy on water 
limitation and vice versa and show that the ELI trend remains 
similar but slightly weaker (Supplementary Fig. 6). This is simi-
lar to earlier observation-based findings in Europe12. Pure water 
limitation is more sensitive to confounding energy effects than vice 
versa, due to the globally consistent incoming shortwave radiation 
trend (Fig. 1b) as opposed to the more uncertain global soil mois-
ture trend (Fig. 1c).

Finally, the long-term land surface dryness as expressed by the 
multimodel mean aridity index (unit-normalized net radiation 
divided by precipitation) tends to increase (Fig. 1f) but less con-
sistently than the ELI. This (1) suggests that the ELI trend cannot 
be explained without considering those ecosystem feedbacks that 
amplify water limitation and (2) shows the importance of compre-
hensively analysing regime shifts from an ecosystem perspective. 
Further, we compare the trends across all considered variables that 
are normalized by the interannual standard deviation of the respec-
tive detrended time series (Supplementary Fig. 7). Here the nor-
malized ELI trend is most notable, even more than its individual 
components. This underlines the importance of the combined effect 
of changes in energy and water availability alongside respective 
ecosystem feedbacks. We note that the uncertainties shown for the 
trends of incoming shortwave radiation, terrestrial evaporation and 
particularly soil moisture do not directly affect the estimation of 
the ELI. The ELI is computed from detrended and de-seasonalized 
data (Methods) where this preprocessing is done separately for each 
model and grid cell such that different trends and seasonal cycles 
are removed. The remaining uncertainty between the (interplay) of 
the anomalies induces the observed intermodel spread in the esti-
mation of the ELI as shown in Fig. 1a; however, this only concerns 
the magnitude of the increasing ELI trend, not the trend itself which 
is apparent from all individual models.
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expansion of ecosystem water limitation
As shown in Fig. 2a, we find increasing ELI trends across ~73% 
of the warm land area (all grid cells with a sufficient number of 
months with air temperature Ta > 10 ̊ C in at least four models; 
Methods). Positive ELI trends are more widespread than negative 
trends: P < 0.05 in 36% of the warm land area for positive trends in 
contrast to 5% for negative trends. We defined regions of interest 
(dashed boxes) around those areas with the strongest ELI trends: 
North America (NAM), South America (SAM), Central Europe 
(CEU), Northern Eurasia (NEU) and East Asia (EAS). As shown in 
the inset of Fig. 2a, ELI increases tend to be strongest over regions 
with large tree coverage. The increasing drought stress, particularly 
in these regions in northern latitudes, has substantial implications 
for the magnitude, and potentially sign, of CO2 exchange6,58. The 
ELI trends of the individual CMIP6 models show similar spatial 
patterns (Supplementary Fig. 8) and agree well with the sign of 

the multimodel mean ELI trend (Supplementary Fig. 9a), particu-
larly in the regions of interest. This agreement between individual 
CMIP6 models emerges despite the relatively high standard devia-
tion between trends of individual CMIP6 models in the regions of 
interest (Supplementary Fig. 9b), illustrating that CMIP6 models 
generally agree on the sign of the ELI trend but less on the magni-
tude. Elaborating further on the individual contributions of water 
limitation and energy limitation on regional ecosystem regime 
shifts (Fig. 1), we show that, particularly in the regions of interest, 
the ELI trend is driven by both an increasing water limitation and a 
decreasing energy limitation (Supplementary Fig. 10).

Figure 2b shows that in the regions of interest, current condi-
tions are either slightly energy limited or transitional, hinting at 
an expansion of water-limited area from 1980 to 2100. We also 
observe further shifts towards ecosystem water limitation in cur-
rent water-limited regions, such as parts of South America, North 
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Fig. 1 | Past and projected global trends in climate and ecosystem variables. a–e, Global evolution of ELI and its individual components cor(SM′,ET′) and 
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in,ET′) and related variables (a), SWin (divided by the latent heat of vaporization and assuming a density of 1,000 kg m−3) (b), SM (c), ET (d), LAI 
(e) and aridity index (f). Dashed coloured lines depict the globally and decadally averaged time series of all respective variables per individual model. Solid 
lines with dots depict multimodel mean time series inferred from the model-specific time series (the median is used in f, as aridity index can approach 
infinity in regions with low precipitation), where the shaded regions cover ±1 multimodel standard deviation. The y axis denotes the change since 1980 
onward. Global averages are calculated over land grid cells that have complete time series for all models and variables and are weighted according to the 
surface area per grid cell. Dot-dashed lines in d denote reference terrestrial evaporation datasets23,28,29,72. This figure is created with the ggplot2 package73.
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Africa, Australia and the west of North America. Interestingly, not 
all tropical regions are consistently subjected to increasing ELI. 
For example, there is a contrast between South America and tropi-
cal Africa because soil moisture is decreasing across large parts of 
South America (Supplementary Fig. 11b), while for Central Africa 
the CMIP5 ensemble estimates increasing soil moistures related to 
projected precipitation increases59. Spatial patterns of ELI (trends) 
computed with air temperature anomalies are comparable (Fig. 2c), 
with SAM and Central Africa being slightly less energy limited. This 
indicates a higher sensitivity of tropical ecosystems to incoming 
radiation due to typically dense cloud cover making radiation a lim-
iting factor for terrestrial evaporation (Supplementary Fig. 10b)60.

Next, we assess the timing of shifts of energy- to water-limited 
regions over the study period (Fig. 2c). We detect the time of regime 
shifts as the first decade after which the ELI is of positive sign. We find 
that transitional regions are migrating in space throughout 1980–
2100, most notably in the Northern Hemisphere (NAM and NEA). 
This causes the water-limited fraction of the warm land area to expand 
from 70% to 77% (inset), representing approximately an additional 
7 million km2 in 2100 as compared to 1980. ELI increases occur con-
tinuously over time and in similar ways across different regions of 

interest (Supplementary Fig. 12). This foreshadows a further expan-
sion of areas in water deficit, continuing an observed trend over 
1982–20154. Further, this indicates that global ELI trends (Figs. 1a  
and 2a) are not simply strengthening (weakening) pre-existing 
water-limited (energy-limited) conditions but lead to actual regime 
shifts. We find similar ELI trends when applying air temperature 
anomalies as a proxy for energy availability (Supplementary Fig. 13a)  
but since especially the tropics show a lower sensitivity to tempera-
ture anomalies, spatial shifts in the transitional regions are particu-
larly different in SAM (Supplementary Fig. 13b).

In addition to assessing ELI trends in space, we show trends in 
water-limited months-of-year to investigate ELI changes in time 
across seasons (Fig. 3). In 43% of the warm land area, and particu-
larly in our regions of interest, we detect an increase in the dura-
tion of the water-limited season by up to 6 months, as opposed to 
a decrease in water-limited months in 3% of the warm land area. 
The side panels in Fig. 3 show the changes over time in the dura-
tion of the water-limited season. For NAM, NEA, CEU and EAS 
the warm season length (months-of-year with temperature >10 ̊ C) 
increases, while in SAM it already covers all months. In all regions, 
the water-limited season expands to earlier and/or later months 
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which were previously energy-limited or cold. Further, the maxi-
mum water limitation intensifies.

Attribution of trends towards ecosystem water limitation
Attributing ELI trends to land–atmosphere variables, in Fig. 4 we 
identify relevant variables in ~59% of the warm land area, where 
sufficient variance of the ELI time series (12 decadal values) can 
be explained by the optimal combination of hydrological, meteo-
rological and ecological predictors. Figure 4 does not necessarily 
rely on one multiple linear model only; all possible combinations 
of predictors are attempted and we consider all similarly perform-
ing multiple linear models (adjusted R2 > 0.5; Methods). By doing 
so, we effectively exclude predictors that carry similar information, 
which means that if multiple predictors are included in the best 
model, they must carry different information about ELI variability. 
Incoming shortwave radiation is the most important ELI predictor 
and is dominant in 20% of the warm land area. The other predic-
tors are less dominant (9–11% of the warm land). Clearly, incoming 
shortwave radiation is relatively most important in terms of the area 
where it can predict ELI trends but the full set of variables is required 
to explain the trends globally as evidenced by the few grid cells that 
only have one predictor, which confirms earlier attribution analyses 
based on observations and model simulations4,48. Similar results are 
obtained with different thresholds for model performance (adjusted 
R2 > 0.3 or adjusted R2 > 0.7; Supplementary Fig. 14).

The scattered pattern in Fig. 4 underlines the relevance of local 
climate, vegetation and/or soil characteristics and, by extension, 
land use changes in inducing shifts in ELI. We therefore extend 
the analysis in Fig. 4, by expanding the number of considered pre-
dictors in the multivariate linear regression by including the time 
series of crop and tree fraction as proxies for land use change 
(Supplementary Fig. 15). The importances of changes in crop and 
tree fraction does not exceed the other variables. Moreover, the 
global average adjusted R2 across the considered well-performing 

multivariate linear models in all grid cells is similar (0.42 versus 0.43 
in the default analysis), indicating that the additional predictors are 
not important at the large spatial scales investigated here. Finally, 
the robustness of the multimodel mean attribution analysis is fur-
ther confirmed by shortwave incoming radiation emerging as the 
most important predictor for most of the individual Earth system 
models (Supplementary Fig. 16).

Across the regions of interest, incoming shortwave radia-
tion is the most relevant predictor in 27%–57% of the respective 
regional areas where well-performing linear models could be fit-
ted. Incoming shortwave radiation is the most important predictor 
across most regions of interest, apart from CEU (Supplementary 
Fig. 17). This is corroborating the widespread alleviating energy 
limitation pushing ecosystems towards water limitation (Fig. 1a 
and Supplementary Fig. 10b). The trends in the individual variables 
confirm that within the regions of interest, both increasing incom-
ing shortwave radiation and decreasing soil moisture contribute 
to increasing ecosystem water limitation (Supplementary Fig. 11).  
In addition, increasing CO2 and favourable energy availability and 
water availability cause plants to increase their LAI and conse-
quently terrestrial evaporation rates. LAI is increasing in regions 
close to transitioning between water- and energy-limited conditions 
and particularly at the northern latitudes: plants may compete for 
light when water is abundant (and light is limiting) by allocating 
part of the increased carbon uptake to growing more leaves61.

While our study presents clear evidence of globally increasing 
ELI and physical mechanisms behind the changes, the accuracy 
of the analyses is intrinsically limited due to inherent uncertain-
ties in the models. For example, different representations of some 
processes that are relevant for ecosystem function cause uncertainty 
in CMIP6 model simulations including the expected effects of CO2 
fertilization on LAI17,55, water use efficiency15,16 and the implementa-
tion of dynamic vegetation (Methods). Some models have also been 
shown to be oversensitive to CO2 fertilization62. Other processes,  
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regions where no significant changes in the length of the water-limited season were detected. Side panels show the multimodel mean month-of-year ELI 
evolution in the regions of interest (Methods). White colour denotes cold months (Ta < 10 °C). This figure is created with the ggplot2 package and the 
country borders using the maptools package73,74.
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such as the development of deeper roots in response to increased 
water (or nutrient) demands63,64, are typically not represented. 
Further, models have difficulty capturing evaporative regime 
changes65–67 which can arise from different representations within 
the complex coupled land–atmosphere system. This affects the 
multimodel spread, with respect to both the ELI trends and means 
that are largest in the regions of interest (Supplementary Fig. 7). 
Finally, next to energy limitation and water limitation, nutri-
ent limitation on plant transpiration potentially plays an increas-
ingly important role in the future68. We do not consider nutrient 
limitation; it is difficult to validate models given the sparsely avail-
able observational data and uncertainties associated with human 
involvement in the phosphorus and nitrogen cycles69. Despite these 
shortcomings, the multimodel mean terrestrial evaporation closely 
resembles state-of-the-art datasets. We suggest that these uncer-
tainties may influence the magnitude but not the sign of ELI trends 
(Supplementary Fig. 9). Finally, we have established the ability of 
the ELI to reflect spatiotemporal variability in water-limited condi-
tions by using a conceptual soil moisture model within which the 
concept of water limitation is implemented through a soil moisture 
stress function. Using model output, we successfully validate the 
ELI against the number of days that soil moisture is drier than the 
critical soil moisture, effectively reflecting water-limited conditions, 
in a number of grid cells spanning from energy- to water-limited 
conditions (Supplementary Discussion and Supplementary Fig. 20).

Our study reveals a widespread regime shift from ecosystem 
energy limitation to water limitation that can be attributed to a large 
extent to global warming. The strongest regional ELI trends are 
attributed to a combination of reduced energy limitation and exacer-
bated water limitation. Moreover, we find that incoming shortwave  

radiation is the most important predictor for the trend towards eco-
system water limitation but not exclusively so as global patterns can 
only be explained using a wider range of variables, including soil 
moisture, terrestrial evaporation, LAI and aridity index.

The ongoing debate on the importance of energy limitation versus 
water limitation for terrestrial evaporation and ecosystem produc-
tivity3,23,48,70,71 can therefore be resolved by simultaneously consid-
ering energy- and water-limitation trends for ecosystem function. 
While, globally, soil moisture is important for making ecosystems 
water- or energy-limited9,10,12, incoming shortwave radiation trends 
prove more consistent and dominate trends in ecosystem function.

Our analysis demonstrates a globally increasing ecosystem water 
limitation over 73% of the warm land area. This has implications for 
food and water scarcity, land degradation, disruption of CO2 seques-
tration by terrestrial ecosystems, reduction in biodiversity and the 
duration, intensity and frequency of extreme events. By simultane-
ously considering both energy limitation and water limitation, a 
fuller explanation of regional changes in ecosystem function and 
a clearer view of future changes in these systems can be obtained.
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Methods
Ecosystem limitation index. The ELI is based on the correlation-difference index 
introduced by ref. 12:

ELI = cor
(

SM′, ET′
)

− cor
(

SW′

in, ET
′
)

Kendall’s rank correlation is used to avoid assuming linear relationships 
between variables and prime denotes monthly anomalies of SM, ET and SWin, 
respectively, which are derived by removing long-term trends and mean seasonal 
cycles (section on ‘Data preprocessing’). We use monthly time resolution 
to mitigate the influence of synoptic weather variability. The ELI combines 
information on water (cor(SM′,ET′)) and energy availability (cor(SW′

in,ET′)) 
for a considerate estimate of ecosystem function. The choices of the variables 
representing energy (incoming shortwave radiation) and water availability (soil 
moisture) and ecosystem function (terrestrial evaporation) are explained in the 
introduction.

The purpose of ELI is to distinguish water- and energy-limited regimes 
(Supplementary Table 1). With the soil moisture content below the wilting point 
(SMwilt), no water can be extracted from the soil for evaporation, neither for plant 
transpiration nor bare soil evaporation. The associated extremely low variability in 
terrestrial evaporation leads to near-zero cor(SM′,ET′), cor(SW′

in,ET′) and ELI.
In water-limited regions, typically ELI > 0, cor(SM′,ET′) > 0 and cor(SW′

in,ET′) 
is either close to zero or negative. In these regions, the soil moisture is typically 
between the wilting point and the critical soil moisture content (SMcrit), which is 
defined as the soil moisture content above which plants can sustain their maximum 
evaporative fraction9–11. So when SMwilt < SM < SMcrit, positive soil moisture 
anomalies tend to increase the terrestrial evaporation, while negative soil moisture 
anomalies achieve the contrary (cor(SM′,ET′) > 0). Further, a positive soil moisture 
anomaly arises from precipitation; in addition, the related cloudiness prevents 
radiation from reaching the land surface, which leads to a negative incoming 
shortwave radiation anomaly (cor(SW′

in,ET′) < 0).
In energy-limited conditions, typically ELI < 0, cor(SW′

in,ET′) > 0 and 
cor(SM′,ET′) is either close to zero or negative. When the soil moisture content 
exceeds the critical soil moisture, the maximum evaporative fraction can be 
sustained and any soil moisture anomaly will not affect terrestrial evaporation 
directly (cor(SM′,ET′) ≈ 0). Next to water, ample energy should be available in the 
form of adequate incoming shortwave radiation. Therefore, any positive (negative) 
incoming shortwave radiation anomalies will increase (decrease) terrestrial 
evaporation cor(SW′

in,ET′) > 0.
Supplementary Table 1 explains that, according to average soil moisture 

conditions, soil moisture anomalies play an obvious role for terrestrial evaporation. 
But, in energy limitation, incoming shortwave radiation anomalies dictate 
terrestrial evaporation. Therefore, it is important to consider energy availability 
cor(SW′

in,ET′) alongside water availability cor(SM′,ET′) when assessing ecosystem 
function. Note that the ELI is a correlative index, which cannot prove causality.

The different combinations of individual correlations in Supplementary Table 2 
reveal characteristic local temporal dynamics that could lead to either general energy 
limitation (ELI < 0) or water limitation (ELI > 0). For example, water limitation 
is concluded when ELI > 0, which follows when cor(SM′,ET′) > cor(SW′

in,ET′) 
is satisfied. The opposite is true for energy-limited conditions: when ELI < 0, 
cor(SM′,ET′) < cor(SW′

in,ET′). Supplementary Table 2, which summarizes the most 
common combinations of the individual correlations to conclude water-limited 
(ELI > 0) or energy-limited conditions (ELI < 0), shows that the most common 
combination across all models and decades (section on ‘Data preprocessing’) is 
when both individual correlations are of opposing sign (84% of the water-limited 
warm land area and 58% for energy limitation), indicating that almost, if not all, 
months in that respective decade are consistently water- or energy-limited. Positive 
correlations of the same sign indicate that that decade is characterized by both 
intermittent energy- and water-limitation. Slightly negative individual correlations 
might co-occur but are usually insignificant and are therefore excluded.

CMIP6 data. We use publicly available simulations from 11 models included 
in CMIP6 (ref. 52), of which the most important aspects are summarized in 
Supplementary Table 3. For the historical period, we use the model simulations 
from 1980 to 2015. From the future scenario (2015–2100), we use simulations from 
the ‘worst-case’ SSP 5-8.5 scenario from ScenarioMIP75, which combines the 2100 
forcing level of 8.5 W m−2 of the CMIP5 Representative Concentration Pathways 
simulations (RCP 8.5) with newly defined SSP simulations for fossil-fuelled 
development (SSP 5). We do so assuming that this worst-case scenario will 
give insight into the potential implications on ecosystem function. All data are 
downloaded at the monthly time scale and aggregated to a common 2 × 2 degree 
grid cell spatial resolution.

Data preprocessing. After acquiring the data, a series of steps is taken to compute 
the ELI from the raw time series of the respective variables, which we have 
illustrated for two typically water- and energy-limited grid cells, respectively 
(Supplementary Figs. 18 and 19). Per individual CMIP6 model, the entire 120-yr 
period is divided into 12 decades (top row). Detrending is done per decade by 
removing linear regression fits (left panel, middle row), to minimize biases in 

the anomaly estimation that relate to assuming trend linearity over the entire 
120-yr period. In addition, the seasonal cycle is calculated per decade as the 
month-of-year average of the respective variable (middle panel, middle row). The 
anomalies result from subtracting the seasonal cycle from the detrended time series 
(right panel, middle row). From the resulting time series we exclude all months 
colder than 10 ̊ C to remove periods with presumably inactive or sparse vegetation 
and frozen soils (dashed lines, right panel, middle row), at the same time ensuring 
that there is sufficient variability in terrestrial evaporation for computing the 
correlations that constitute the ELI. Thereafter, we compute the ELI for each decade 
and model. Thereby, we ignore grid cells with <30 data points. Whereas we use 
model data in this analysis to study potential long-term shifts in ecosystem water 
limitation, we highlight that this methodology can also be used in near-real time to 
monitor climate change in observational data with a trailing period of a decade. In 
addition, trends could be obtained by applying a moving window of a decade.

The warm land area as referred to in the manuscript then constitutes all grid 
cells that have full ELI time series from 1980–2100 for at least four models. The 
decadal month-of-year ELI time series (Fig. 3) are only calculated when in the 
respective decade and month-of-year all ten data points are available (temperature 
is warmer than 10 °C).

The saturated vapour pressure was calculated with temperature and relative 
humidity as:

VPSAT =
610.7 × 10 (7.5Ta) / (237.3 + Ta)

1, 000

where Ta is air temperature in ˚C. Then, the vapour pressure deficit (VPD) is:

VPD = VPSAT

(

1 −

RH
100

)

where RH is the relative humidity.
The sum of bare soil evaporation and canopy interception was calculated by 

subtracting plant transpiration from terrestrial evaporation (ET − T).

Computing Theil–Sen slopes and slope significance. The trends shown in Figs. 2 
and 3 and Supplementary Figs. 8, 10, 11 and 13 are based on Theil–Sen slopes76,77. 
This approach is insensitive to statistical outliers, as the median slope from a range 
of possible slopes is selected as the best fit. The significance of these slopes is 
determined on the basis of Kendall’s tau statistic from Mann–Kendall tests.

Multimodel inference using the Akaike Information Criteria. We assess the 
skill of a range of predictors (Supplementary Table 4) to predict decadal ELI time 
series by using multivariate linear regression in combination with the dredge 
function in the MuMin package in R78,79, thereby adopting a similar methodology 
to ref. 80. This function tries all possible combinations of predictors and ranks 
them on the basis of Akaike Information Criterion (AIC), allowing the selection 
of a range of similarly well-performing multivariate linear models with respect to 
model performance (likelihood) and complexity (number of parameters). From 
this, we select all models whose difference in AIC with the best-ranked model 
is smaller than 4, which results in 1 to a maximum of 15 similarly performing 
multivariate linear models per grid cell. Only multivariate linear models with 
sufficient predictive power (adjusted R2 > 0.5) are considered in the attribution 
analysis. In the case that there is only one model with one explanatory variable, this 
is assumed the most important predictor in that respective grid cell. Given just one 
multivariate linear model with multiple predictors, the most important variable is 
determined according to the variance explained per variable according to the ‘lmg’ 
metric in the ‘relaimpo’ R package81. When there are multiple multivariate linear 
models with multiple predictors, the most important predictor is picked according 
to the average variance explained across all multiple linear models, weighted by the 
Akaike weights assigned to all models.

Data availability
The CMIP6 model simulations are freely available from Google cloud CMIP6 
public data: https://pangeo-data.github.io/pangeo-cmip6-cloud/. All the data used 
in this analysis are publicly available from a data repository that can be accessed via 
Zenodo: https://doi.org/10.5281/zenodo.6566274.

Code availability
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